Due Tuesday, 20 March 2012 at 10:00 AM in EE208. This problem set covers Lecture 7-9. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15 pts) Find the inverse of the following $n \times n$ matrix:

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 1 & \cdots & 1 \\
1 & 1 & 0 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 0
\end{array}\right] .
$$

Hint: Split A into $E-I$, where every entry of E is 1 . Then try multiply some matrix on the right to get the identity matrix.
2. (15pts) Let

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 6 & 6 & 8 \\
1 & 3 & 4 & 6 \\
2 & 5 & 7 & 9
\end{array}\right]
$$

Find the permutation matrix P as well as LU factors such that $P A=L U$.
3. (20pts)
(a) Split A in (2) into $B+C$, where $B=B^{T}$ is symmetric and $C=-C^{T}$ is anti-symmetric.
(b) Find formulas for B and C involving A and A^{T}. We want $A=B+C$ with $B=B^{T}$ and $C=-C^{T}$.
4. (20pts) True or false. If true, give your reasoning; otherwise, give a counterexample.
(a) If $A \neq 0$, it is impossible that $A^{2}=0$. Note that $A^{2}=A A$.
(b) If $A \neq 0$, it is impossible that $A^{T} A=0$.
(c) If A is symmetric then $A^{k}=A A \cdots A$ is symmetric, for every positive integer k.
(d) If A and B are symmetric then $(A+B)(A-B)$ is symmetric.
(e) If A and B are symmetric then $A^{2}-B^{2}$ is symmetric.
5. (15pts) If you take powers of a permutation matrix, why is some P^{k} eventually equal to I ? Find a 5 by 5 permutation matrix P so that $P^{k} \neq I$ for $k=1,2,3,4,5$, and $P^{6}=I$.
6. (15pts) Let A be an m by n matrix. Define $S=\left[\begin{array}{cc}I_{m} & A \\ A^{T} & 0\end{array}\right]$. Use block elimination to find a block factorization $S=L D L^{T}$. Note that L has the form $L=\left[\begin{array}{cc}I_{m} & 0 \\ X & I_{n}\end{array}\right]$ and D has the form $D=\left[\begin{array}{ll}Y & 0 \\ 0 & Z\end{array}\right]$, where Y and Z are square matrices. Identify the condition that S is invertible and write down S^{-1} in the 2 by 2 block matrix form.

