Linear Algebra

Problem Set 3
Spring 2013

Due Thursday, 21 March 2013 at 4:20 PM in EE208. This problem set covers Lecture 8-10. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) True or false. If true, give your reasoning; otherwise, give a counterexample.
(a) If A is symmetric, then $A^{k}=A A \ldots A$ is symmetric, k is any positive integer.
(b) If A and B are symmetric, then $\left[\begin{array}{ll}B & A \\ A & B\end{array}\right]$ is symmetric.
(c) If A and B are symmetric, then $A B A$ is symmetric.
(d) If A and B are symmetric, then $A B A B$ is symmetric.
(e) If A and B are symmetric, then $(A+B)^{2}$ is symmetric.
2. (15pts) Find the $L D L^{T}$ factorization of the block matrix $B=\left[\begin{array}{cc}I_{n} & A \\ A^{T} & 0\end{array}\right]$, where A is n by n. Note that L represents a block lower triangular matrix and D represents a block diagonal matrix. Prove that B is invertible if and only if A is invertible.
3. (10pts) Show that every n by n matrix A can be decomposed as $A=B+C$, where $B=B^{T}$ and $C=-C^{T}$. Note that C is called skew-symmetric.
4. (20pts)
(a) Find a 3 by 3 permutation matrix with $P^{3}=I$ (but not $P=I$).
(b) Find a 5 by 5 permutation matrix so that the smallest power to equal I is

$$
P^{6} \text {. That is, } P^{k} \neq I \text {, for } k=1,2, \ldots, 5 \text {. }
$$

5. (15pts) Section 3.1, Problem 10

Which of the following subsets of \mathbb{R}^{3} are actually subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$.
(b) The plane of vectors with $b_{1}=1$.
(c) The vectors with $b_{1} b_{2} b_{3}=0$.
(d) All linear combinations of $\mathbf{v}=(1,4,0)$ and $\mathbf{w}=(2,2,2)$.
(e) All vectors that satisfy $b_{1}+b_{2}+b_{3}=0$.
(f) All vectors with $b_{1} \leq b_{2} \leq b_{3}$.
6. (15pts) Section 3.1, Problem 18

Let vector space \mathbf{M} be the set of all 2 by 2 real matrices. True or false (check addition in each case by an example):
(a) The symmetric matrices in \mathbf{M} (with $A^{T}=A$) form a subspace.
(b) The skew-symmetric matrices in \mathbf{M} (with $A^{T}=-A$) form a subspace.
(c) The unsymmetric matrices in \mathbf{M} (with $A^{T} \neq A$) form a subspace.
7. (10pts) Let A be a 2 by 2 symmetric matrix. Suppose every A can be written as a linear combination of B, C, and D. Give an example of B, C, and D.

