Linear Algebra

Due Tuesday, 22 March 2016 at 12:00 PM in EE105. This problem set covers
Lectures 9-12. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your work.

1. (10pts) Consider the partitioned matrices

$$
A=\left[\begin{array}{ll}
a & \mathbf{b}^{T} \\
0 & C
\end{array}\right] \text { and } S=\left[\begin{array}{ll}
1 & 0 \\
0 & D
\end{array}\right]
$$

where C and D are n by n matrices (D is invertible), a is a scalar, and \mathbf{b} is a column vector with n components. Compute $S^{-1} A S$.
2. (10 pts) Consider the partitioned matrix

$$
A=\left[\begin{array}{ll}
I_{n} & \mathbf{b} \\
\mathbf{c}^{T} & 1
\end{array}\right],
$$

where \mathbf{b} and \mathbf{c} are column vectors in \mathbb{R}^{n}. For which choices of \mathbf{b} and \mathbf{c} is A invertible? In these cases, what is A^{-1} ?
3. (10 pts) Which of the following sets are subspaces of \mathbb{R}^{3} ?
(a) $S=\{(x, y, z) \mid x+y+z=1\}$
(b) $S=\{(x, y, z) \mid x y z=0\}$
(c) $S=\{(x, y, z) \mid x \leq y \leq z\}$
(d) $S=\{(x+y, y+z, z+x) \mid x, y, z \in \mathbb{R}\}$
(e) $S=\{(x, y, z) \mid x=y=z\}$
4. (10pts) Consider the vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$ in \mathbb{R}^{n}. Prove that span $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\}$ is a subspace of \mathbb{R}^{n}.
5. (15pts) In this problem, let

$$
\mathbf{x}=\left[\begin{array}{c}
5 \\
3 \\
-8
\end{array}\right] \text { and } \mathbf{y}=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

(a) Find a diagonal matrix A such that $A \mathbf{x}=\mathbf{y}$.
(b) Find a matrix A of rank 1, i.e., $\operatorname{rank}(A)=1$, such that $A \mathbf{x}=\mathbf{y}$.
(c) Find an upper triangular matrix A such that $A \mathbf{x}=\mathbf{y}$. Also, it is required that all the entries of A on and above the diagonal be nonzero.
(d) Find a matrix A with all nonzero entries such that $A \mathbf{x}=\mathbf{y}$.
6. (15pts) Answer the following questions.
(a) Give an example of a 2 by 2 matrix A such that $C(A)=N(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$.
(b) Give an example of a matrix A such that $C(A)$ is plane with normal vector

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \text { in } \mathbb{R}^{3} .
$$

(c) Give an example of a matrix A whose $N(A)$ is the plane $x+2 y+3 z=0$ in \mathbb{R}^{3}.
(d) Give an example of a matrix A whose $N(A)$ is the line spanned by

$$
\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \text { in } \mathbb{R}^{3} .
$$

7. (10pts) Let

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 2 \\
1 & 4 & 7 & 0
\end{array}\right]
$$

Find a matrix B so that $N(B)=C(A)$.
8. (20pts) Answer the following questions.
(a) How many types of 3 by 2 matrices in reduced row-echelon form are there?
(b) How many types of 2 by 3 matrices in reduced row-echelon form are there?
(c) Consider an m by n matrix A. Can you transform $\operatorname{rref}(A)$ (reduced row echelon form of A) into A by a sequence of elementary row operations? Explain.
(d) If the rank of a 4 by 4 matrix A is 4 , what is $\operatorname{rref}(A)$?
(e) If the rank of a 5 by 3 matrix A is 3 , what is $\operatorname{rref}(A)$?

