Linear Algebra

Problem Set 4
Spring 2012

Due Thursday, 29 March 2012 at 4:30 PM in EE208. This problem set covers Lecture 10-12. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) Which of the following are subspaces of \mathbb{R}^{4} ?
(a) All vectors that satisfies $x_{1}-x_{3}+x_{4}=0$.
(b) All vectors that satisfies $x_{1}+x_{2}+x_{3}+x_{4}=1$.
(c) All vectors with $x_{1} x_{3}=0$.
(d) All vectors with $x_{1} \leq x_{2}$.
(e) $\{(t, 1-t, 2 t, 0) \mid t \in \mathbb{R}\}$
(f) $\{(t,-s+t, 2 t, 4 s) \mid s, t \in \mathbb{R}\}$
2. (15 pts) Let $S=\operatorname{span}\{(1,1,1)\}$ and $T=\operatorname{span}\{(1,2,3)\}$. True or false.
(a) $S+T=\{\mathbf{x}+\mathbf{y} \mid \mathbf{x} \in S, \mathbf{y} \in T\}$ is a subspace.
(b) $S \cup T$ is a subspace.
(c) $S+T=\operatorname{span}\{S \cup T\}$
3. (15pts) All the following matrices are square. True or false. If true, give your reasoning; otherwise, give a counterexample.
(a) The nullspace of $2 A$ equals the nullspace of A.
(b) If $A^{2}=0$, then $C(A)=\{\mathbf{0}\}$.
(c) The column space of A^{2} equals the column space of A.
(d) The nullspace of A^{2} equals the nullspace of A.
4. (10pts) Section 3.2, Problem 35, 36
(a) If A is 4 by 4 and invertible, describe all vectors in the nullspace of the 4 by 8 matrix $B=\left[\begin{array}{ll}A & A\end{array}\right]$.
(b) How is the nullspace $N(C)$ related to the spaces $N(A)$ and $N(B)$, if

$$
C=\left[\begin{array}{l}
A \\
B
\end{array}\right] ?
$$

5. (20pts) Let A be a 3 by 4 matrix.
(a) Find a system of equations $A \mathbf{x}=\mathbf{b}$ whose solutions are

$$
\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
5 \\
2
\end{array}\right],\left[\begin{array}{l}
6 \\
0 \\
1 \\
2
\end{array}\right]\right\} .
$$

(b) What is the reduced row echelon form R of A ?
(c) Find the nullspace matrix N associated with R so that $C(N)=N(R)$.
(d) Prove that $C(N)=$ span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{l}6 \\ 0 \\ 1 \\ 2\end{array}\right]\right\}$. Let S and T be two subspaces. To
prove $S=T$, you can show that for every $\mathbf{x} \in S$, it follows that $\mathbf{x} \in T$, and thus $S \subseteq T$. Then prove $T \subseteq S$, and therefore $S=T$.
6. (20pts) Let $R=\left[\begin{array}{rr}I_{r} & F \\ 0 & 0\end{array}\right]$ be an m by n matrix and $\operatorname{rank} R=r$.
(a) If $r=m$, find a B such that $R B=I$.
(b) If $r=n$, find a C such that $C R=I$.
(c) What is the reduced row echelon form of R^{T} ? Write down in block matrix form.
(d) What is the reduced row echelon form of $R^{T} R$?
(e) Can you tell the reduced row echelon form of $R R^{T}$? If not, explain why not.

