Linear Algebra

Problem Set 4 Spring 2015

Due Tuesday, 7 April 2015 at 12:00 PM in EE106. This problem set covers Lecture 13-16. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

- 1. (10pts) Construct a matrix with the required property or use the rank-nullity theorem to explain why this is impossible:
 - (a) Column space contains $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.
 - (b) Column space contains $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, row space contains $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (c) Column space has basis $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, nullspace has basis $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (d) Row space has basis $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, nullspace has basis $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.
 - (e) Column space = row space, nullspace = left null space.
- 2. (15pts) Let

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 \\ 1 & 3 & 7 & 1 \\ 1 & 3 & 7 & 1 \end{bmatrix}.$$

- (a) Find the reduced row echelon form of A.
- (b) Find the complete solution to Ax=0.
- (c) Find the nullspace matrix of *A*. Note that column space of the nullspace matrix equals the nullspace of *A*.
- (d) Determine the condition of $\mathbf{b} = (b_1, b_2, b_3)^T$ so that $A\mathbf{x} = \mathbf{b}$ is consistent (solvable).
- (e) Find the general solution to $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (8,11,11)^T$.

3. (10pts) Consider the problem of solving linear system $A\mathbf{x}=\mathbf{b}$, where A is given below. Note that the dimension of \mathbf{b} is determined by A.

$$(1) \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{bmatrix} (2) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} (3) \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} (4) \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} (5) \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

- (a) Which of the above system has at least one solution for every **b**?
- (b) Which of the above system has at most one solution for every **b**?
- (c) Which of the above system has exactly one solution for every **b**?
- (d) Which of the above system has infinite many solutions for every **b**?
- (e) Which of the above system has no solution for some **b**?
- 4. (15pts) Suppose the rows of an m by n matrix A are linearly independent.
 - (a) What is the rank of A?
 - (b) What is the column space of A and the left nullspace of A?
 - (c) What is the relation of m and n?
 - (d) Is $A\mathbf{x}=\mathbf{b}$ always solvable for every m-dimensional vector \mathbf{b} ?
 - (e) If Ax=b is solvable, is the solution necessarily unique?
 - (f) Can you always find a matrix B such that $AB=I_m$?
 - (g) Can you always find a matrix B such that $BA=I_n$?
- 5. (10pts) Suppose the general solution to the equation $A\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ is

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

What is A?

6. (15pts) The reduced row echelon form of $\begin{bmatrix} A & I_3 \end{bmatrix}$ is

$$\begin{bmatrix} 1 & 2 & 0 & 1 & -1 & 5 & 2 \\ 0 & 0 & 1 & 4 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 3 \end{bmatrix}.$$

- (a) What is A?
- (b) Find bases for the column space, row space, nullspace, and left nullspace of *A*.

2

(c) Is
$$A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$
 solvable? Why or why not.

(d) Is
$$A\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 solvable? Why or why not.

- 7. (15pts) Let A be an m by n matrix.
 - (a) Let E be an m by m invertible matrix and B=EA. Prove that if $\mathbf{b}_j = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$, then $\mathbf{a}_j = c_1 \mathbf{a}_1 + \dots + c_n \mathbf{a}_n$, where \mathbf{a}_j and \mathbf{b}_j denote

the *j*th column of *A* and *B*, respectively, i.e.,
$$A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$$
 and

$$B = [\mathbf{b}_1 \quad \cdots \quad \mathbf{b}_n].$$

- (b) If *E* is not invertible, is the statement in (a) still correct? If yes, give a reason; if no, give a counter example.
- (c) From Problem 6, express \mathbf{a}_2 and \mathbf{a}_4 as a linear combination of \mathbf{a}_1 and \mathbf{a}_3 , respectively.
- 8. (10pts) True or false. If true, give your reasoning; otherwise, give a counterexample. All the following matrices are square.
 - (a) If *A* and *B* have the same reduced row echelon form, then *A* and *B* have the same column space.
 - (b) If *A* and *B* have the same reduced row echelon form, then *A* and *B* have the same nullspace.
 - (c) The nullspace of A^2 equals the nullspace of A.
 - (d) If A is invertible, then the left nullspace of A equals the nullspace of A.
 - (e) If $rank(A^2)=0$, then A=0.