Linear Algebra

Due Tuesday, 29 March 2016 at 12:00 PM in EE105. This problem set covers
Lectures 13-16. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Consider the problem of solving linear system $A \mathbf{x}=\mathbf{b}$, where A is given below. Note that the dimension of \mathbf{b} is determined by A.
(1) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$
(2) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
(3) $\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 3\end{array}\right]$
(4) $\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right]$
(5) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$
(a) Which of the above system has at least one solution for every \mathbf{b} ?
(b) Which of the above system has at most one solution for every \mathbf{b} ?
(c) Which of the above system has exactly one solution for every \mathbf{b} ?
(d) Which of the above system has infinite many solutions for every \mathbf{b} ?
(e) Which of the above system has no solution for some \mathbf{b} ?
2. (20pts) Let

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20
\end{array}\right]
$$

(a) Find a basis for the column space of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the nullspace of A.
(d) Find a basis for the nullspace of A^{T}.
(e) Determine the condition of $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)^{T}$ so that $A \mathbf{x}=\mathbf{b}$ is solvable.
(f) Find the general solution of $A \mathbf{x}=\mathbf{b}$, where $\mathbf{b}=(0,4,8,12,16)^{T}$.
3. (20pts) Suppose the columns of an m by n matrix A are linearly independent.
(a) What is the rank of A ?
(b) What is the relation of m and n ?
(c) What is the reduced row echelon form of A ?
(d) What is the row space of A and the nullspace of A ?
(e) What is the dimension of the column space of A ?
(f) What is the dimension of the nullspace of A^{T} ?
(g) Is $A \mathbf{x}=\mathbf{b}$ always solvable for every m-dimensional vector \mathbf{b} ?
(h) If $A \mathbf{x}=\mathbf{b}$ is consistent, is the solution necessarily unique?
(i) Can you always find a matrix B such that $A B=I_{m}$?
(j) Can you always find a matrix B such that $B A=I_{n}$?
4. (15pts) Consider a square matrix A.
(a) What is the relationship between $N(A)$ and $N\left(A^{2}\right)$? Are they necessarily equal? More generally, what can you say about $N(A), N\left(A^{2}\right), N\left(A^{3}\right), \ldots$?
(b) What can you say about $C(A), C\left(A^{2}\right), C\left(A^{3}\right), \ldots$?
(c) If $N\left(A^{2}\right)=N\left(A^{3}\right)$, is it true that $N\left(A^{3}\right)=N\left(A^{4}\right)$? Justify your answer.
5. (5pts) Consider a p by n matrix A and a q by n matrix B, and form the partitioned matrix $C=\left[\begin{array}{l}A \\ B\end{array}\right]$. What is the relationship between $N(A), N(B)$, and $N(C)$?
6. (5pts) Consider an n by p matrix A and a p by m matrix B. You are told that the columns of A and the columns of B are linearly independent. Are the columns of $A B$ linearly independent as well?
7. (5pts) Consider three linearly independent vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}. Are the vectors \mathbf{u}, $\mathbf{u}+\mathbf{v}, \mathbf{u}+\mathbf{v}+\mathbf{w}$ linearly independent as well?
8. (15pts) Consider linearly independent vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$ in \mathbb{R}^{n}. Let
$A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{k}\end{array}\right]$. Let B be an invertible k by k matrix and C be an invertible n by n matrix.
(a) Are the columns of $A B$ linearly independent?
(b) Are the columns of $C A$ linearly independent?

