Due Tuesday, 10 April 2012 at 10:00 AM in EE208. This problem set covers Lecture 13-16. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for \mathbb{R}^{n}.
(a) For any $\mathbf{x} \in \mathbb{R}^{n}$, prove that there is a unique way to express \mathbf{x} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. (You may assume that there are two ways to do so, e.g., $\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots+c_{n} \mathbf{v}_{n}$ and $\mathbf{x}=d_{1} \mathbf{v}_{1}+d_{2} \mathbf{v}_{2}+\ldots+d_{n} \mathbf{v}_{n}$. Then show that $c_{i}=d_{i}$, for $i=1,2, \ldots, n$.)
(b) Let A be an n by n invertible matrix. Prove that $A \mathbf{v}_{1}, A \mathbf{v}_{2}, \ldots, A \mathbf{v}_{n}$ is also a basis for \mathbb{R}^{n}.
(Recall that all basis vectors are independent and they span \mathbb{R}^{n}.)
2. (15 pts) Let A be an m by n matrix.
(a) Let E be an m by m invertible matrix and $B=E A$. Prove that if $\mathbf{b}_{j}=c_{1} \mathbf{b}_{1}+\cdots+c_{n} \mathbf{b}_{n}$, then $\mathbf{a}_{j}=c_{1} \mathbf{a}_{1}+\cdots+c_{n} \mathbf{a}_{n}$, where \mathbf{a}_{j} and \mathbf{b}_{j} denote the j th column of A and B, respectively, i.e., $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ and $B=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{n}\end{array}\right]$.
(b) Let R be the reduced row echelon form of A. If $R=\left[\begin{array}{rrrr}1 & 5 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$, express \mathbf{a}_{2} and \mathbf{a}_{4} as a linear combination of \mathbf{a}_{1} and \mathbf{a}_{3}, respectively.
(c) If E is not invertible, is the statement in (a) still correct? If yes, give a reason; if no, give a counter example.
3. (15pts) Let A be a 3 by 5 matrix. The reduced row echelon form of $\left[\begin{array}{ll}A & I_{3}\end{array}\right]$ is as follows:

$$
\left[\begin{array}{rrrrrrrr}
1 & -2 & 3 & 0 & -2 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 3 & 2 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Determine A. Find bases for the four fundamental subspaces of A.
4. (20pts)

Find a basis for each of these subspaces of \mathbb{R}^{n} :
(a) All vectors whose components are equal.
(b) All vectors whose components add to zero.
(c) All vectors that are perpendicular to $(1,1,1,0)$ and $(1,0,1,1)$.
(d) All vectors of the form (a, b, c, d), where $a=b$ and $c=d$.
(For each problem, try to translate the requirement into the column space or nullspace of a matrix.)
5. (20pts) Construct a matrix with the required property or explain why this is impossible:
(a) Column space has basis $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, nullspace has basis $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
(b) Column space contains $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$, row space contains $\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
(c) Dimension of column space $=$ dimension of nullspace.
(d) Left nullspace contains $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, row space contains $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(e) Row space $=$ column space, but nullspace \neq left nullspace.
6. (15pts) Suppose the general solution to the equation

$$
A \mathbf{x}=\left[\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right] \text { is } \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\alpha\left[\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right],
$$

and the general solution to the equation

$$
A \mathbf{x}=\left[\begin{array}{l}
2 \\
2 \\
1 \\
1
\end{array}\right] \text { is } \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\alpha\left[\begin{array}{r}
-1 \\
1 \\
1
\end{array}\right] .
$$

(a) Determine $\operatorname{rank} A$ and $\operatorname{dim} N(A)$.
(b) Find a basis for the column space of A.
(c) Find the reduced row echelon form of A.

