Linear Algebra

Problem Set 5

Due Tuesday, 28 April 2015 at 12:00 PM in EE106. This problem set covers Lecture 18-21. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Find the standard matrix for T, determine $\operatorname{rank}(T)$ and bases for the range and kernel (like the column space and nullspace) of T :
(a) $T\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}x_{1}-x_{2} \\ x_{1}+x_{2}\end{array}\right]$
(b) $T\left(x_{1}, x_{2}, x_{3}\right)=\left[\begin{array}{l}x_{1}-x_{2} \\ x_{1}+x_{3}\end{array}\right]$
(c) $T\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}x_{1} \\ x_{1} \\ x_{2}\end{array}\right]$
2. (20pts) Suppose $T: V \rightarrow W$ is a linear transformation. Let $n=\operatorname{dim} V$, $m=\operatorname{dim} W$ and $r=\operatorname{rank}(T)$.
(a) If T is one-to-one, what is the relationship between m, n, and r ?
(b) If T maps V onto W, what can you say about m, n, and r ?
(c) If T is one-to-one and maps onto W, what can you say about m, n, and r ?
(d) If T is not one-to-one and does not map onto W, what can you say about m, n, and r ?
3. (15pts) Let $T: V \rightarrow W$ be a linear transformation.
(a) If there exists a nonzero vector \mathbf{x} such that $T(\mathbf{x})=\mathbf{0}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set in V, is it true that set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent?
(b) If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly dependent set in V, is it true that set $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is linearly dependent?
(c) If $\{\mathbf{u}, \mathbf{v}\},\{\mathbf{v}, \mathbf{w}\}$ and $\{\mathbf{w}, \mathbf{u}\}$ are linearly independent sets in V, are you sure that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a linearly independent set?
4. (10pts)
(a) Find the coordinate vector of $p(t)=2+t+3 t^{2}$ relative to the basis

$$
B=\left\{p_{1}(t), p_{2}(t), p_{3}(t)\right\} \text {, where } p_{1}(t)=1, p_{2}(t)=1+t, p_{3}(t)=1+2 t+t^{2} \text {. }
$$

(b) Use coordinate vectors (with respect to any legal basis) to test the linear independence of the following set of polynomials:

$$
p_{1}(t)=1+t^{2}, p_{2}(t)=1+t+2 t^{2}, p_{3}(t)=2+t+3 t^{2} .
$$

5. (25pts) Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and

$$
T(1,1)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T(-1,1)=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

(a) What is $T(1,3)$?
(b) If $T(x, y)=\left[\begin{array}{l}3 \\ 5\end{array}\right]$, determine the values of x and y.
(c) Find the matrix representation of T with respect to the standard basis

$$
S=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\} \text {, i.e., }[T]_{S} . \quad \text { Recall that the first column of }[T]_{S} \text { is the }
$$ coordinate vector of $T(1,0)$ relative to basis S.

(d) Find the coordinate vector of $\mathbf{x}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ with respect to the basis

$$
B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\} \text {, i.e., }[\mathbf{x}]_{B} .
$$

(e) Find the matrix representation of T with respect to the basis

$$
B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\} \text {, i.e., }[T]_{B} . \text { Note that }[T(\mathbf{x})]_{B}=[T]_{B}[\mathbf{x}]_{B} .
$$

6. (15pts) Let $T(X)=A X$, where $X=\left[\begin{array}{ll}x_{11} & x_{12} \\ x_{21} & x_{22}\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$. Note that T maps 2 by 2 matrices into 2 by 2 matrices.
(a) Find the matrix representation of T with respect to the standard basis

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} . \text { That is, find }[T]_{S} .
$$

(b) Find the matrix representation of T with respect to the basis

$$
B=\left\{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right],\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right],\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\right\} . \text { That is, find }[T]_{B} \text {. }
$$

