Linear Algebra Problem Set 5

Due Thursday, 21 April 2016 at 4:20 PM in EE105. This problem set covers Lectures 18-21. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

- 1. (20pts) In this problem, you are asked to interpret linear transformations geometrically.
 - (a) Describe all linear transformations from $\mathbb{R}(=\mathbb{R}^1)$ to \mathbb{R} . What do their graphs look like?
 - (b) Describe all linear transformations from ℝ² to ℝ. What do their graphs look like?

(c) Consider the vector
$$\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix}$$
. Is the transformation $T(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ (the dot

product) from \mathbb{R}^3 to \mathbb{R} linear? If so, find the matrix of *T*.

(d) The cross product of two vectors in \mathbb{R}^3 is defined by

$$\mathbf{x} \times \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \times \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{bmatrix}.$$

Is the transformation $T(\mathbf{x}) = \mathbf{x} \times \mathbf{y}$ from \mathbb{R}^3 to \mathbb{R}^3 linear? If so, find the matrix of *T* in terms of the components of the vector \mathbf{y} .

- 2. (20pts) In this problem, you are asked to design geometric transformations.
 - (a) Show that if *T* is a linear transformation from \mathbb{R}^n to \mathbb{R}^m , then

$$T\left(\begin{bmatrix} x_1\\x_2\\\vdots\\x_n\end{bmatrix}\right) = x_1T\left(\begin{bmatrix} 1\\0\\\vdots\\0\end{bmatrix}\right) + x_2T\left(\begin{bmatrix} 0\\1\\\vdots\\0\end{bmatrix}\right) + \dots + x_nT\left(\begin{bmatrix} 0\\0\\\vdots\\1\end{bmatrix}\right).$$

- (b) Use (a) to find the matrix of the transformation from \mathbb{R}^2 to \mathbb{R}^2 that rotates any vector through a given angle θ in the counterclockwise direction.
- (c) Find the matrix of orthogonal projection onto the line L in \mathbb{R}^2 that consists of all scalar multiples of the vector $\begin{bmatrix} 3\\1 \end{bmatrix}$.
- (d) Refer to (c). Find the matrix of reflection about the line L.

- 3. (20pts) Ture or false? Give a reason or counterexample. Let *A* be an *m* by *n* real matrix.
 - (a) If A is one-to-one, then rank(A)=n.
 - (b) If A is one-to-one, then A^T maps \mathbb{R}^m onto \mathbb{R}^n .
 - (c) If A maps \mathbb{R}^n onto \mathbb{R}^m , then rank(A)=m.
 - (d) If A is isomorphism, then m=n and A is nonsingular.
 - (e) If A has linearly independent columns, then A is one-to-one.
 - (f) If A has linearly independent rows, then A maps \mathbb{R}^n onto \mathbb{R}^m .
 - (g) If A is one-to-one, then $A^T A$ is isomorphism.
 - (h) If A is one-to-one, then AA^T is isomorphism.
 - (i) If A maps \mathbb{R}^n onto \mathbb{R}^m , then $A^T A$ is isomorphism.
 - (j) If A maps \mathbb{R}^n onto \mathbb{R}^m , then AA^T is isomorphism.
- 4. (25pts) Consider linear transformations in \mathbb{R}^2 .

(a) Consider the basis
$$\boldsymbol{\beta} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$
 of \mathbb{R}^2 . If $\mathbf{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$, find $[\mathbf{x}]_{\boldsymbol{\beta}}$.

(b) Refer to (a). Find the coordinate mapping T such that $T(\mathbf{x}) = [\mathbf{x}]_{\beta}$.

(c) Refer to (a). Let
$$\gamma = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$
 be another basis of \mathbb{R}^2 . Find a matrix *P*

such that $[\mathbf{x}]_{\gamma} = P[\mathbf{x}]_{\beta}$.

- (d) Find a new basis β of \mathbb{R}^2 such that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\beta} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}_{\beta} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
- (e) Find a new basis $\boldsymbol{\beta}$ of \mathbb{R}^2 such that the matrix representation of reflection *T* about the line in \mathbb{R}^2 spanned by $\begin{bmatrix} 3\\1 \end{bmatrix}$ with respect to $\boldsymbol{\beta}$ is diagonal. That is, $[T(\boldsymbol{\beta})]_{\boldsymbol{\beta}}$ is diagonal.
- 5. (15pts) Let $\boldsymbol{\beta} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis of \mathbb{R}^3 consisting of perpendicular unit vectors, such that $\mathbf{v}_3 = \mathbf{v}_1 \times \mathbf{v}_2$. Find the matrix representation of the given linear transformation *T* from \mathbb{R}^3 to \mathbb{R}^3 with respect to the basis $\boldsymbol{\beta}$.
 - (a) $T(\mathbf{x}) = \mathbf{x} 2(\mathbf{v}_3 \cdot \mathbf{x})\mathbf{v}_3$
 - (b) $T(\mathbf{x}) = \mathbf{x} 2(\mathbf{v}_1 \cdot \mathbf{x})\mathbf{v}_2$
 - (c) $T(\mathbf{x}) = \mathbf{v}_1 \times \mathbf{x} + (\mathbf{v}_1 \cdot \mathbf{x})\mathbf{v}_1$