Due Tuesday, 7 May 2013 at 12:00 PM in EE208. This problem set covers Lecture 22-25. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (25pts) Suppose T is a linear transformation, and

$$
T(1,1)=\left[\begin{array}{l}
1 \\
2
\end{array}\right], T(1,-1)=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Consider the following bases for \mathbb{R}^{2} :

$$
S=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right\} .
$$

Let $\mathbf{x} \in \mathbb{R}^{2}$. The coordinate vector of \mathbf{x} relative to S is denoted by $[\mathbf{x}]_{S}$.

Similarly, we have $[\mathbf{x}]_{B}$ and $[\mathbf{x}]_{C}$. Let $[T]_{S}$ be the matrix representation of T
with respect to S. Similarly, we have $[T]_{B}$ and $[T]_{C}$. Note that
$[T(\mathbf{x})]_{S}=[T]_{S}[\mathbf{x}]_{S}$.
(a) Find the change of coordinates matrices P and Q such that $[\mathbf{x}]_{B}=P[\mathbf{x}]_{S}$
and $[\mathbf{x}]_{C}=Q[\mathbf{x}]_{S}$.
(b) Find the change of coordinates matrices K such that $[\mathbf{x}]_{C}=K[\mathbf{x}]_{B}$.
(c) Given $[T]_{S}$, how can you find $[T]_{B}$? Write down the equation.
(d) Given $[T]_{B}$, how can you fin $[T]_{C}$? Write down the equation.
(e) Draw a diagram to illustrate the relationships among the following item:

$$
[\mathbf{x}]_{S},[\mathbf{x}]_{B},[\mathbf{x}]_{C},[T]_{S},[T]_{B},[T]_{C}, P, Q, K
$$

2. (15pts)
(a) If S is the subspace of $\mathbf{x} \in \mathbb{R}^{3}$ containing only the zero vector, what is S^{\perp} ?
(b) If S is spanned by $(1,1,1)$, what is S^{\perp} ?
(c) If S is spanned by $(1,1,1)$ and $(1,1,0)$, what is S^{\perp} ?
3. (10 pts) Let A be an m by n matrix.
(a) Use the orthogonal subspaces theorem ($2^{\text {nd }}$ fundamental theorem of linear algebra) to explain why every $\mathbf{x} \in \mathbb{R}^{n}$ can be decomposed, in a unique way, into a row space component $\mathbf{x}_{r} \in C\left(A^{T}\right)$ and $\mathbf{x}_{n} \in N(A)$ such that $\mathbf{x}=\mathbf{x}_{r}+\mathbf{x}_{n}$.
(b) For every \mathbf{b} in the column space of A, show that there is one and only one vector $\mathbf{x}_{r} \in C\left(A^{T}\right)$ satisfying $A \mathbf{x}_{r}=\mathbf{b}$. (Hint: See the last part of Lecture 23.)
4. (15pts)
(a) Suppose A is 3 by 4 and B is 4 by 5 and $A B=0$. Use the rank-nullity theorem to show that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq 4$.
(b) Is it true that $x+y+z=0$ and $x-2 y+z=0$ are orthogonal subspaces because $(1,1,1)$ is perpendicular to $(1,-2,1)$? Why or why not.
(c) Find a basis for the orthogonal complement of S, where S is spanned by $(1,1,0,0)$ and $(0,0,1,1)$. (Hint: Can you find a matrix so that its row space is S ?)
5. (20pts) Let $A=\left[\begin{array}{cccc}1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2\end{array}\right]$.
(a) Find the orthogonal projection matrix P onto the column space of A. Note that the columns of A are not linearly independent. So, you need to find a basis for the column space first. It is true that $C(P)=C(A)$?
(b) Find the point in the column space of A which is closest to $(1,2,3)$.
(c) Find the orthogonal projection matrix Q onto the nullspace of A. There are two ways to do. The first way is to find the nullspace matrix of A, denoted by N. The column space of N is the nullspace of A. Then find the projection matrix onto the column space of N, as you did in (a). The second way is to find the projection matrix S onto the row space of A, which is the column space of A^{T}. Show that $Q=I-S$.
6. (15 pts) There are two types of least-squares problems.
(a) Suppose $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find the least-squares solution $\hat{\mathbf{x}}$ so
that $\|\mathbf{b}-A \hat{\mathbf{x}}\|^{2}$ is minimized.
(a) Suppose $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{c}4 \\ 5\end{array}\right]$. Find the solution of $A \mathbf{x}=\mathbf{b}$ so that $\|\mathbf{x}\|^{2}$ is minimized. Are you sure that such an \mathbf{x} always in the row space of A ? (Hint: Write down $\mathbf{x}=\mathbf{x}_{r}+\mathbf{x}_{n}$. Then compute $\|\mathbf{x}\|^{2}$.)
