Linear Algebra Problem Set 6

Due Thursday, 7 May 2015 at 4:20 PM in EE106. This problem set covers Lecture 22-25. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (25pts) Suppose *T* is a linear transformation, and

$$T(1,1) = \begin{bmatrix} 3\\7 \end{bmatrix}, \ T(-1,1) = \begin{bmatrix} 1\\1 \end{bmatrix}.$$

Consider the following ordered bases for \mathbb{R}^2 :

$$S = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}, C = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix} \right\}.$$

Let $\mathbf{x} \in \mathbb{R}^2$. The coordinate vector of \mathbf{x} relative to *S* is denoted by $[\mathbf{x}]_s$. Similarly, we have $[\mathbf{x}]_B$ and $[\mathbf{x}]_C$. Let $[T]_s$ be the matrix representation of *T* with respect to *S*. Similarly, we have $[T]_B$ and $[T]_C$. Note that $[T(\mathbf{x})]_s = [T]_s [\mathbf{x}]_s$.

(a) Find the change of coordinates matrices *P* and *Q* such that $[\mathbf{x}]_B = P[\mathbf{x}]_S$

and $[\mathbf{x}]_C = Q[\mathbf{x}]_S$.

- (b) Find the change of coordinates matrices K such that $[\mathbf{x}]_C = K[\mathbf{x}]_B$.
- (c) Given $[T]_s$, how can you find $[T]_c$? Write down the equation.
- (d) Given $[T]_{c}$, how can you fin $[T]_{B}$? Write down the equation.
- (e) Draw a diagram to illustrate the relationships among the following item: $[\mathbf{x}]_{s}, [\mathbf{x}]_{R}, [\mathbf{x}]_{c}, [T]_{s}, [T]_{R}, [T]_{c}, P, Q, K.$
- 2. (20ts)
 - (a) If S is spanned by (1,0,1,0) and (1,1,0,0), find a matrix A so that $S^{\perp} = C(A)$ and a matrix B so that S = N(B).
 - (b) Will it be possible to find a matrix A so that $C(A) = N(A)^{\perp}$?
 - (c) Is it true that x y + z = 0 and x + 2y + z = 0 are orthogonal subspaces

because (1,-1,1) is perpendicular to (1,2,1)? Why or why not.

- 3. (15pts) Let A be an m by n matrix.
 - (a) Use the orthogonal subspaces theorem (2nd fundamental theorem of linear algebra) to explain why every x ∈ ℝⁿ can be decomposed, in a unique way, into a row space component x_r ∈ C(A^T) and x_n ∈ N(A) such that x = x_r + x_n.
 - (b) For every **b** in the column space of *A*, show that there is one and only one vector $\mathbf{x}_r \in C(A^T)$ satisfying $A\mathbf{x}_r = \mathbf{b}$.
 - (c) For every **b** in the column space of *A*, among all the solutions of $A\mathbf{x} = \mathbf{b}$, show that $\mathbf{x}_r \in C(A^T)$ minimizes $\|\mathbf{x}\|$. (Hint: compute $\|\mathbf{x}\|^2 = \|\mathbf{x}_r + \mathbf{x}_n\|^2$.)
- 4. (20pts) There are two types of least-squares problems. See (a) and (b).

(a) Suppose
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. Find the least-squares solution $\hat{\mathbf{x}}$ so

that $\|\mathbf{b} - A\hat{\mathbf{x}}\|^2$ is minimized.

(b) Suppose $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find the solution of $A\mathbf{x} = \mathbf{b}$ so

that $\|\mathbf{x}\|^2$ is minimized.

(c) Combine (a) and (b). Suppose $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find the

least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b} - A\hat{\mathbf{x}}\|^2$ is minimized and $\|\mathbf{x}\|^2$ is minimized.

5. (20pts) Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
.

- (a) Find the orthogonal projection matrix *P* onto the row space of *A*. Note that the rows of *A* are not linearly independent. So, you need to find a basis for the row space first. It is true that *P* and *A* have the same row space, i.e., $C(P^T) = C(A^T)$? Or, $C(P) = C(A^T)$?
- (b) Find the orthogonal projection matrix Q onto the nullspace of A.

(c) Find the point in the row space of A which is closest to (1,2,2).