Due Thursday, 7 May 2015 at 4:20 PM in EE106. This problem set covers Lecture 22-25. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (25pts) Suppose T is a linear transformation, and

$$
T(1,1)=\left[\begin{array}{l}
3 \\
7
\end{array}\right], T(-1,1)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Consider the following ordered bases for \mathbb{R}^{2} :

$$
S=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}, B=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\}, C=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right\} .
$$

Let $\mathbf{x} \in \mathbb{R}^{2}$. The coordinate vector of \mathbf{x} relative to S is denoted by $[\mathbf{x}]_{S}$. Similarly, we have $[\mathbf{x}]_{B}$ and $[\mathbf{x}]_{C}$. Let $[T]_{S}$ be the matrix representation of T with respect to
S. Similarly, we have $[T]_{B}$ and $[T]_{C}$. Note that $[T(\mathbf{x})]_{S}=[T]_{S}[\mathbf{x}]_{S}$.
(a) Find the change of coordinates matrices P and Q such that $[\mathbf{x}]_{B}=P[\mathbf{x}]_{S}$ and $[\mathbf{x}]_{C}=Q[\mathbf{x}]_{S}$.
(b) Find the change of coordinates matrices K such that $[\mathbf{x}]_{C}=K[\mathbf{x}]_{B}$.
(c) Given $[T]_{S}$, how can you find $[T]_{C}$? Write down the equation.
(d) Given $[T]_{C}$, how can you fin $[T]_{B}$? Write down the equation.
(e) Draw a diagram to illustrate the relationships among the following item:

$$
[\mathbf{x}]_{S},[\mathbf{x}]_{B},[\mathbf{x}]_{C},[T]_{S},[T]_{B},[T]_{C}, P, Q, K .
$$

2. (20ts)
(a) If S is spanned by $(1,0,1,0)$ and $(1,1,0,0)$, find a matrix A so that $S^{\perp}=C(A)$ and a matrix B so that $S=N(B)$.
(b) Will it be possible to find a matrix A so that $C(A)=N(A)^{\perp}$?
(c) Is it true that $x-y+z=0$ and $x+2 y+z=0$ are orthogonal subspaces
because $(1,-1,1)$ is perpendicular to $(1,2,1)$? Why or why not.
3. (15pts) Let A be an m by n matrix.
(a) Use the orthogonal subspaces theorem ($2^{\text {nd }}$ fundamental theorem of linear algebra) to explain why every $\mathbf{x} \in \mathbb{R}^{n}$ can be decomposed, in a unique way, into a row space component $\mathbf{x}_{r} \in C\left(A^{T}\right)$ and $\mathbf{x}_{n} \in N(A)$ such that $\mathbf{x}=\mathbf{x}_{r}+\mathbf{x}_{n}$.
(b) For every \mathbf{b} in the column space of A, show that there is one and only one vector $\mathbf{x}_{r} \in C\left(A^{T}\right)$ satisfying $A \mathbf{x}_{r}=\mathbf{b}$.
(c) For every \mathbf{b} in the column space of A, among all the solutions of $A \mathbf{x}=\mathbf{b}$, show that $\mathbf{x}_{r} \in C\left(A^{T}\right)$ minimizes $\|\mathbf{x}\|$. (Hint: compute $\|\mathbf{x}\|^{2}=\left\|\mathbf{x}_{r}+\mathbf{x}_{n}\right\|^{2}$.)
4. (20pts) There are two types of least-squares problems. See (a) and (b).
(a) Suppose $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Find the least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b}-A \hat{\mathbf{x}}\|^{2}$ is minimized.
(b) Suppose $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Find the solution of $A \mathbf{x}=\mathbf{b}$ so that $\|\mathbf{x}\|^{2}$ is minimized.
(c) Combine (a) and (b). Suppose $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Find the least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b}-A \hat{\mathbf{x}}\|^{2}$ is minimized and $\|\mathbf{x}\|^{2}$ is minimized.
5. (20pts) Let $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$.
(a) Find the orthogonal projection matrix P onto the row space of A. Note that the rows of A are not linearly independent. So, you need to find a basis for the row space first. It is true that P and A have the same row space, i.e., $C\left(P^{T}\right)=C\left(A^{T}\right)$? Or, $C(P)=C\left(A^{T}\right)$?
(b) Find the orthogonal projection matrix Q onto the nullspace of A.
(c) Find the point in the row space of A which is closest to $(1,2,2)$.
