Linear Algebra

Problem Set 6

Due Thursday, 28 April 2016 at 4:20 PM in EE105. This problem set covers Lectures 22-25. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) Let V be the vector space spanned by the functions e^{x} and e^{-x}, with the bases $\boldsymbol{\beta}=\left\{e^{x}, e^{-x}\right\}$ and $\boldsymbol{\gamma}=\left\{e^{x}+e^{-x}, e^{x}-e^{-x}\right\}$. Consider the linear transformation $D(f)=f^{\prime}$ from V to V. For $f \in V$, the coordinate vector of f relative to $\boldsymbol{\beta}$ is denoted by $[f]_{\beta}$.
(a) Find the matrix representation of D with respect to $\boldsymbol{\beta}$, denoted by $[D]_{\beta}$.
(b) Find the change of coordinates matrices P and Q such that $[f]_{\beta}=P[f]_{\gamma}$ and $[f]_{\gamma}=Q[f]_{\beta}$.
(c) Given $[D]_{\beta}$, how can you find $[D]_{\gamma}$? Write down the equation.
(d) Draw a diagram to illustrate the relationships among the following item:

$$
f, D, D(f),[f]_{\beta},[f]_{\gamma},[D]_{\beta},[D]_{\gamma},[D(f)]_{\beta},[D(f)]_{\gamma} P, Q .
$$

2. (25pts) In this problem, you will study the sum of two subspaces.
(a) Suppose S and T are two subspaces of a vector space V. The sum $S+T$ contains all sums $\mathbf{x}+\mathbf{y}$ of a vector \mathbf{x} in S and a vector \mathbf{y} in T. Show that $S+T$ is a subspace in V.
(b) Explain the identity: $S+T=\operatorname{span}\{S \cup T\}$.
(c) Let S^{\perp} denote the orthogonal complement of S. For every \mathbf{v} in V, show that there exists a unique vector \mathbf{x} in S and a unique vector \mathbf{y} in S^{\perp} such that $\mathbf{v}=\mathbf{x}+\mathbf{y}$. That is, $S+S^{\perp}=V$.
(d) Prove the following identity:

$$
\operatorname{dim}(S+T)=\operatorname{dim} S+\operatorname{dim} T-\operatorname{dim}(S \cap T)
$$

See Strang's textbook ($4^{\text {th }}$ edition) pp 183 for a hint.
(e) Show that $\operatorname{dim} S+\operatorname{dim} S^{\perp}=\operatorname{dim} V$.
3. (35pts) This problem is about orthogonal subspaces and orthogonal projection. Let
S be a subspace in \mathbb{R}^{4} spanned by $(1,0,1,0)$ and $(1,0,0,1)$.
(a) Find a basis for S^{\perp}.
(b) Find a matrix A so that $S=N(A)$.
(c) Find the orthogonal projection matrix P onto S and the orthogonal projection matrix Q onto S^{\perp}.
(d) Show that $C(P)=S$ and $N(P)=S^{\perp}$.
(e) Given $\mathbf{v}=(1,1,1,1)$, find \mathbf{x} in S and \mathbf{y} in S^{\perp} so that $\mathbf{v}=\mathbf{x}+\mathbf{y}$.
(f) Will it be possible to find a matrix B so that $C(B)=N(B)^{\perp}=S$? If yes, show the matrix B.
(g) If a 4 by 4 matrix M satisfies $M^{T}=M=M^{2}$, show that $\mathbf{x}-M \mathbf{x}$ is orthogonal to $M \mathbf{y}$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{4}$.
4. (20pts) There are two types of least-squares problems. See (b) and (c).
(a) For every \mathbf{b} in the column space of A, among all the solutions of $A \mathbf{x}=\mathbf{b}$, show that $\mathbf{x}_{r} \in C\left(A^{T}\right)$ minimizes $\|\mathbf{x}\|$. (Hint: compute
$\|\mathbf{x}\|^{2}=\left\|\mathbf{x}_{r}+\mathbf{x}_{n}\right\|^{2}$, where $\left.\mathbf{x}_{n} \in N(A).\right)$
(b) Suppose $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0 \\ 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Find the least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b}-A \hat{\mathbf{x}}\|^{2}$ is minimized.
(c) Suppose $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$. Find the solution of $A \mathbf{x}=\mathbf{b}$ so that $\|\mathbf{x}\|^{2}$ is minimized.
(d) Combine (b) and (c). Suppose $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Find the least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b}-A \hat{\mathbf{x}}\|^{2}$ is minimized and $\|\hat{\mathbf{x}}\|^{2}$ is minimized. (Hint: Project \mathbf{b} onto $C(A)$.)

