Linear Algebra Problem Set 6

Due Thursday, 28 April 2016 at 4:20 PM in EE105. This problem set covers Lectures 22-25. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

- 1. (20pts) Let *V* be the vector space spanned by the functions e^x and e^{-x} , with the bases $\boldsymbol{\beta} = \{e^x, e^{-x}\}$ and $\boldsymbol{\gamma} = \{e^x + e^{-x}, e^x e^{-x}\}$. Consider the linear transformation D(f) = f' from *V* to *V*. For $f \in V$, the coordinate vector of *f* relative to $\boldsymbol{\beta}$ is denoted by $[f]_{\boldsymbol{\beta}}$.
 - (a) Find the matrix representation of D with respect to β , denoted by $[D]_{\beta}$.
 - (b) Find the change of coordinates matrices *P* and *Q* such that $[f]_{\beta} = P[f]_{\gamma}$ and $[f]_{\gamma} = Q[f]_{\beta}$.
 - (c) Given $[D]_{\beta}$, how can you find $[D]_{\gamma}$? Write down the equation.
 - (d) Draw a diagram to illustrate the relationships among the following item: $f, D, D(f), [f]_{\beta}, [f]_{\gamma}, [D]_{\beta}, [D]_{\gamma}, [D(f)]_{\beta}, [D(f)]_{\gamma}, P, Q.$
- 2. (25pts) In this problem, you will study the sum of two subspaces.
 - (a) Suppose S and T are two subspaces of a vector space V. The sum S+T contains all sums x+y of a vector x in S and a vector y in T. Show that S+T is a subspace in V.
 - (b) Explain the identity: $S + T = \text{span} \{ S \cup T \}$.
 - (c) Let S^{\perp} denote the orthogonal complement of *S*. For every **v** in *V*, show that there exists a unique vector **x** in *S* and a unique vector **y** in S^{\perp} such that $\mathbf{v} = \mathbf{x} + \mathbf{y}$. That is, $S + S^{\perp} = V$.
 - (d) Prove the following identity:

 $\dim(S+T) = \dim S + \dim T - \dim(S \cap T).$

See Strang's textbook (4th edition) pp 183 for a hint.

- (e) Show that $\dim S + \dim S^{\perp} = \dim V$.
- 3. (35pts) This problem is about orthogonal subspaces and orthogonal projection. Let

S be a subspace in \mathbb{R}^4 spanned by (1,0,1,0) and (1,0,0,1).

- (a) Find a basis for S^{\perp} .
- (b) Find a matrix A so that S = N(A).
- (c) Find the orthogonal projection matrix *P* onto *S* and the orthogonal projection matrix *Q* onto S^{\perp} .
- (d) Show that C(P) = S and $N(P) = S^{\perp}$.
- (e) Given $\mathbf{v} = (1,1,1,1)$, find \mathbf{x} in S and \mathbf{y} in S^{\perp} so that $\mathbf{v} = \mathbf{x} + \mathbf{y}$.
- (f) Will it be possible to find a matrix *B* so that $C(B) = N(B)^{\perp} = S$? If yes, show the matrix *B*.
- (g) If a 4 by 4 matrix *M* satisfies $M^T = M = M^2$, show that $\mathbf{x} M\mathbf{x}$ is orthogonal to $M\mathbf{y}$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^4$.
- 4. (20pts) There are two types of least-squares problems. See (b) and (c).
 - (a) For every **b** in the column space of *A*, among all the solutions of $A\mathbf{x} = \mathbf{b}$,

show that $\mathbf{x}_r \in C(A^T)$ minimizes $\|\mathbf{x}\|$. (Hint: compute

$$\|\mathbf{x}\|^2 = \|\mathbf{x}_r + \mathbf{x}_n\|^2$$
, where $\mathbf{x}_n \in N(A)$.)

(b) Suppose
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Find the least-squares solution $\hat{\mathbf{x}}$ so

that $\|\mathbf{b} - A\hat{\mathbf{x}}\|^2$ is minimized.

(c) Suppose $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Find the solution of $A\mathbf{x} = \mathbf{b}$ so

that $\|\mathbf{x}\|^2$ is minimized.

(d) Combine (b) and (c). Suppose $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Find the least-squares solution $\hat{\mathbf{x}}$ so that $\|\mathbf{b} - A\hat{\mathbf{x}}\|^2$ is minimized and $\|\hat{\mathbf{x}}\|^2$ is minimized. (Hint: Project **b** onto C(A).)