Due Thursday, 3 May 2012 at 4:30 PM in EE208. This problem set covers Lecture 22-24. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (30pts) Consider two bases
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$
 and $C = \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2\\4 \end{bmatrix} \right\}$ for a subspace

S in \mathbb{R}^3 . Consider a linear transform $T: S \to S$, defined by

$$T\begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, T\begin{pmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}.$$
 Suppose the coordinate vector of **x** with respect to

basis \mathcal{B} is $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{B} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

- (a) Find $T(\mathbf{x})$.
- (b) Find $[\mathbf{x}]_{C}$ and $[T(\mathbf{x})]_{C}$.
- (c) Find the change-of-coordinates matrix from basis *C* to *B*, denoted by $C_{C \to B}$. Note that $[\mathbf{x}]_B = C_{C \to B} [\mathbf{x}]_C$.
- (d) Find the 2 by 2 matrix representation for T with respect to basis \mathcal{B} .
- (e) Find the 2 by 2 matrix representation for T with respect to basis C.
- (f) Find the matrix A so that $[T(\mathbf{x})]_C = A[\mathbf{x}]_B$.
- 2. (20pts) 4.1, Exercise 30

Suppose *A* is 3 by 4 and *B* is 4 by 5 and *AB*=0. So *N*(*A*) contains *C*(*B*). Prove from the dimensions of *N*(*A*) and *C*(*B*) that rank*A* + rank*B* \leq 4.

3. (20pts) Suppose *W* is the subspace spanned by
$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$.

(a) Find the point in *W* that is closest to
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

- (b) Find the projection matrix P_W onto W. What is rank P_W ?
- (c) Find the projection matrix $P_{W^{\perp}}$ onto W^{\perp} . What is rank $P_{W^{\perp}}$?
- (d) Find a basis for W^{\perp} . (Think of the column space of $P_{W^{\perp}}$.)
- 4. (15pts) Show that if $P^T = P$ and $P^2 = P$ then *P* is an orthogonal projection matrix. Note that *P* is an orthogonal projection matrix if $(I P)\mathbf{x} \perp P\mathbf{y}$, for any \mathbf{x} and \mathbf{y} . This means that the column space of *P* is orthogonal to the column space of (I P).
- 5. (15pts) 4.2, Exercise 32

Suppose P_1 is the projection matrix onto the 1-dimensional subspace spanned by the first column of *A*. Suppose P_2 is the projection matrix onto the 2-dimensional column space of *A*. After thinking a little, compute the product P_2P_1 .

$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}.$$