Due Thursday, 3 May 2012 at 4:30 PM in EE208. This problem set covers Lecture 22-24. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (30pts) Consider two bases $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and $C=\left\{\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ -2 \\ 4\end{array}\right]\right\}$ for a subspace S in \mathbb{R}^{3}. Consider a linear transform $T: S \rightarrow S$, defined by
$T\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$. Suppose the coordinate vector of \mathbf{x} with respect to basis \mathcal{B} is $[\mathbf{x}]_{B}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$.
(a) Find $T(\mathbf{x})$.
(b) Find $[\mathbf{x}]_{C}$ and $[T(\mathbf{x})]_{C}$.
(c) Find the change-of-coordinates matrix from basis C to \mathscr{B}, denoted by $C_{C \rightarrow B}$.

Note that $[\mathbf{x}]_{B}=C_{C \rightarrow B}[\mathbf{x}]_{C}$.
(d) Find the 2 by 2 matrix representation for T with respect to basis \mathcal{B}.
(e) Find the 2 by 2 matrix representation for T with respect to basis C.
(f) Find the matrix A so that $[T(\mathbf{x})]_{C}=A[\mathbf{x}]_{B}$.
2. (20pts) 4.1, Exercise 30

Suppoes A is 3 by 4 and B is 4 by 5 and $A B=0$. So $N(A)$ contains $C(B)$. Prove from the dimensions of $N(A)$ and $C(B)$ that $\operatorname{rank} A+\operatorname{rank} B \leq 4$.
3. (20pts) Suppose W is the subspace spanned by $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
(a) Find the point in W that is closest to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(b) Find the projection matrix P_{W} onto W. What is $\operatorname{rank} P_{W}$?
(c) Find the projection matrix $P_{W^{\perp}}$ onto W^{\perp}. What is $\operatorname{rank} P_{W^{\perp}}$?
(d) Find a basis for W^{\perp}. (Think of the column space of $P_{W^{\perp}}$.)
4. (15pts) Show that if $P^{T}=P$ and $P^{2}=P$ then P is an orthogonal projection matrix. Note that P is an orthogonal projection matrix if $(I-P) \mathbf{x} \perp P \mathbf{y}$, for any \mathbf{x} and \mathbf{y}. This means that the column space of P is orthogonal to the column space of $(I-P)$.
5. (15pts) 4.2, Exercise 32

Suppose P_{1} is the projection matrix onto the 1-dimensional subspace spanned by the first column of A. Suppose P_{2} is the projection matrix onto the 2-dimensional column space of A. After thinking a little, compute the product $P_{2} P_{1}$.

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 1
\end{array}\right]
$$

