Due Tuesday, 14 May 2013 at 12:00 PM in EE208. This problem set covers Lecture 26-30. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts)
(a) Express Gram-Schmidt orthogonalization process of

$$
\mathbf{a}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \text { as } A=Q R .
$$

(b) Use the QR factorization to solve the least squares solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 2\end{array}\right]$.
2. (15pts) Suppose $Q=\left[\begin{array}{ll}\mathbf{q}_{1} & \mathbf{q}_{2}\end{array}\right]$ is a 3 by 2 matrix with orthonormal columns.
(a) Write down the orthogonal projection matrix onto the column space of Q.
(b) Describe the nullspaces of Q, Q^{T} and $Q Q^{T}$.
(c) Suppose \mathbf{a} is not in the column space of Q. Use Gram-Schmidt process to find \mathbf{q}_{3} so that $\left[\begin{array}{lll}\mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3}\end{array}\right]$ is an orthogonal matrix.
(d) Suppose $\mathbf{b}=2 \mathbf{q}_{1}+3 \mathbf{q}_{2}+4 \mathbf{q}_{3}$. Find the least squares solution to $Q \mathbf{x}=\mathbf{b}$. What is the orthogonal projection of \mathbf{b} onto the column space of Q ?
3. (15pts) Let $H=I-2 \mathbf{u u}^{T}$, where $\|\mathbf{u}\|=1$.
(a) What is H^{-1} ? What is H^{100} ?
(b) Describe the set of \mathbf{x} so that $H \mathbf{x}=\mathbf{x}$. Describe the set of \mathbf{y} so that $H \mathbf{y}=-\mathbf{y}$.
(c) Find \mathbf{u} so that $H\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$.
4. (10pts) True or false, with a reason or counterexample if false. Suppose all the matrices are square.
(a) $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$
(b) $\operatorname{det}(2 A)=2 \operatorname{det} A$
(c) $\operatorname{det}\left(A^{10}\right)=(\operatorname{det} A)^{10}$
(d) If $A^{T}=-A$, then $\operatorname{det} A=0$.
(e) If $A^{T}=A^{-1}$, then $\operatorname{det} A=1$ or -1 .
5. (15pts) It is known that $\left|\begin{array}{ll}A & B \\ 0 & C\end{array}\right|=(\operatorname{det} A)(\operatorname{det} C)$, where A and C are square.
(a) Let A and B be n by n. Derive a formula for $\left|\begin{array}{ll}0 & A \\ B & C\end{array}\right|$.
(b) Let A, B, C, D be n by n. If D is invertible and $C D=D C$, show that $\left|\begin{array}{ll}A & B \\ C & D\end{array}\right|=\operatorname{det}(A D-B C)$. Hint: Consider $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{cc}I & 0 \\ -D^{-1} C & I\end{array}\right]$.
(c) Are you sure that $\left|\begin{array}{lllll}a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & 0 & 0 & 0 \\ a_{41} & a_{42} & 0 & 0 & 0 \\ a_{51} & a_{52} & 0 & 0 & 0\end{array}\right|=0$? Why or why not.
6. (15pts) Use determinants to answer the following questions.
(a) A box has edges from $(0,0,0)$ to $(1,1,1)$ and $(1,1,2)$ and $(1,2,3)$. Find its volume.
(b) Find the area of the parallelogram with sides from $(0,0,0)$ to $(1,1,1)$ and $(1,2,3)$.
(c) If $T(x, y)=\left[\begin{array}{l}4 x-2 y \\ 2 x+3 y\end{array}\right]$, find the area of $T(S)$, where $S=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}$.
7. (15pts) Let $A=\left[\begin{array}{llll}2 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{array}\right]$.
(a) Use the Cramer's rule to compute the fourth column of A^{-1}.
(b) Find $\operatorname{det} C$, where C is the cofactor matrix of A. Hint: Use $A^{-1}=\frac{1}{\operatorname{det} A} C^{T}$.
(c) What is the cofactor matrix of C ?

