Linear Algebra

Due Tuesday, 10 May 2016 at 12:00 PM in EE105. This problem set covers Lectures 26-30. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10pts) If the $n \times n$ matrices A and B are orthogonal, which of the following matrices must be orthogonal as well?
(a) $2 A$
(b) $-A$
(c) A^{2}
(d) A^{-1}
(e) A^{T}
(f) $A B$
(g) $A+B$
(h) $A^{-1} B A$
2. (10pts) Search for orthogonal matrices.
(a) Find a 3×3 orthogonal matrix Q such that $Q\left[\begin{array}{l}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(b) Is there an orthogonal matrix Q such that $Q\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$ and

$$
Q\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right] ?
$$

3. (30pts) Perform the Gram-Schmidt process, and thus find the QR factorization of a matrix.
(a) Using paper an pencil, perform the Gram-Schmidt process on the sequences of vectors $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ 1 \\ -1\end{array}\right]$.
(b) Find the QR factorization of $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1\end{array}\right]$.
(c) Find the projection matrix P onto the column space of A. Hint: Use the QR factorization of A.
(d) Find the least-squares solutions of $A \mathbf{x}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(e) Find all vectors \mathbf{b} 's so that the least-squares solutions of $A \mathbf{x}=\mathbf{b}$ is $\hat{\mathbf{x}}=\mathbf{0}$.
4. (10pts) True or false, with a reason or counterexample if false. Suppose A is an $n \times$ n real matrix.
(a) If A is skew-symmetric, i.e., $A^{T}=-A$, then $\operatorname{det} A=0$.
(b) If A is an orthogonal matrix, then $\operatorname{det} A=1$ or -1 .
(c) If A is a projection matrix, then $\operatorname{det} A=1$ or 0 .
(d) If A is a nilpotent matrix, i.e., $A^{k}=0$, for some positive integer k, then $\operatorname{det} A=0$.
(e) If $|\operatorname{det} A|=1$, then the entries of A^{-1} are integers.
5. (20pts) Find the determinants of matrices.
(a) Consider the matrix A_{n} defined as follows:

$$
A_{n}=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & \cdots & 0 \\
1 & 2 & 1 & 0 & \cdots & 0 \\
0 & 1 & 2 & 1 & \cdots & 0 \\
0 & 0 & 1 & 2 & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right] .
$$

Express $\operatorname{det} A_{n}$ in terms of $\operatorname{det} A_{n-1}$ and $\operatorname{det} A_{n-2}$, and then find a closed formula for $\operatorname{det} A_{n}$.
(b) Find the determinant of the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 8 & 9 & 9 \\
0 & 10 & 7 & 21 & 31 \\
0 & 7 & 5 & 19 & 3 \\
0 & 0 & 0 & 8 & 10 \\
0 & 0 & 0 & 7 & 9
\end{array}\right]
$$

(c) Is it true that $\operatorname{det}\left[\begin{array}{ll}A & B \\ 0 & D\end{array}\right]=(\operatorname{det} A)(\operatorname{det} D)$? Explain. Note that A and D are square matrices.
(d) If A, B, C, and D are $n \times n$ matrices, A is invertible and $A C=C A$, show that

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(A D-C B)
$$

Hint: Consider the product $\left[\begin{array}{cc}I & 0 \\ -C & A\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$.
6. (20pts) Use determinants to answer the following questions.
(a) Find the area of the parallelogram defined by the vectors $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(b) Find the area of a polygon with four vertices: $(-7,7),(-5,-6),(5,5),(3,-4)$.
(c) If $T(x, y)=\left[\begin{array}{c}-x-6 y \\ x+4 y\end{array}\right]$, find the area of $T(S)=\{T(\mathbf{x}) \mid \mathbf{x} \in S\}$, where

$$
S=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\} .
$$

(d) Refer to (c). Show that $T(S)$ is an ellipse.

