Due Thursday, 10 May 2012 at 4:30 PM in EE208. This problem set covers Lecture 25-27. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts)

Find the equation $y=\beta_{0}+\beta_{1} t$ of the least-squares line that best fits the data points $(2,1),(5,2),(7,3)$, and $(8,3)$. For the closest parabola $y=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}$ to the same four points, write down the unsolvable equations $A \mathbf{x}=\mathbf{b}$ in three unknowns $\mathbf{x}=\left(\beta_{0}, \beta_{1}, \beta_{2}\right)$. Set up the three normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$ (solution not required).
2. (20pts) Express the Gram-Schmidt orthogonalization of $\mathbf{a}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right] \quad$ as $A=Q R$.
3. (20pts) Let $A=\left[\begin{array}{llll}1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1\end{array}\right]$. Find the projection matrices onto the column
space, row space, nullspace, and left nullspace of A, respectively.
4. (15 pts)
(a) Find a basis for the subspace S in \mathbb{R}^{4} spanned by all solutions of

$$
x_{1}-x_{2}+x_{3}=0 .
$$

(b) Find a basis for the orthogonal complement S^{\perp}.
(c) Find \mathbf{b}_{1} in S and \mathbf{b}_{2} in S^{\perp} so that $\mathbf{b}_{1}+\mathbf{b}_{2}=\mathbf{b}=(1,1,-1,-1)$.
5. (10pts) Section 4.4, Problem 34
$Q=I-2 \mathbf{u} \mathbf{u}^{T}$ is a reflection matrix when $\mathbf{u}^{T} \mathbf{u}=1$. Two reflections give $Q^{2}=I$.
(a) Show that $Q \mathbf{u}=-\mathbf{u}$. The mirror is perpendicular to \mathbf{u}.
(b) Find $Q \mathbf{v}$ when $\mathbf{u}^{T} \mathbf{v}=0$. The mirror contains \mathbf{v}. It reflects to itself.
6. (15pts) Section 4.4, Problem 36

If A is m by n matrix with rank r, and $A=Q\left[\begin{array}{l}R \\ 0\end{array}\right]=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]\left[\begin{array}{l}R \\ 0\end{array}\right]=Q_{1} R$, where Q is an m by m orthogonal matrix, and R is an n by n upper triangular matrix. The n columns of Q_{1} are an orthonormal basis for which fundamental subspace of A ?
The m - n columns of Q_{2} are an orthonormal basis for which fundamental subspace of A ?

