Linear Algebra

Problem Set 8

Due Tuesday, 28 May 2013 at 12:00 PM in EE208. This problem set covers Lecture 32-34. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$. Find the eigenvalues and corresponding eigenvectors of A. Is A diagonalizable? Why or why not.
2. (20pts) A 3 by 3 matrix A is known to have eigenvalues of $1,1,2$. Use this information to find the values of the following items (give the answers where possible):
(a) The rank of A
(b) The eigenvalues of A^{T}
(c) The eigenvalues of A^{3}
(d) The eigenvalues of $\left(A^{2}+I\right)^{-1}$
(e) The determinant of $A^{T} A$
(f) The determinant of $A+2 I$
(g) The determinant of $A^{-1}+A$
(h) The trace of $A+2 I$
(i) The trace of $3 A+4 A^{T}$
(j) The trace of $P^{-1} A P$
3. (15pts) Find the eigenvalues of the following matrices.
(a) $A=\left[\begin{array}{rrrr}5 & 5 & 0 & 7 \\ 0 & 1 & -3 & 3 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & 0 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{rrrr}4 & 0 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 1 & 6 & 3 & 3 \\ 2 & 9 & -4 & -5\end{array}\right]$
(c) $C=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
4. (20pts) True or false. Justify your answer.
(a) If A is invertible, then 0 is not an eigenvalue of A.
(b) If $A^{2}=0$, then the only eigenvalue of A is 0 .
(c) A nonzero vector cannot be the eigenvector corresponding to two different eigenvalues of A.
(d) The sum of two eigenvectors of a matrix A is also an eigenvector.
(e) Each eigenvector of A is also an eigenvector of A^{T}.
(f) If A has distinct eigenvalues, then A is diagonalizable.
(g) If A is row equivalent to I, then A is diagonalizable.
(h) If A has eigenvalues 1,1 , and 1 , then A is not diagonalizable.
(i) If A is diagonalizable, then A^{T} is diagonalizable.
(j) If A is diagonalizable, then A has linearly independent columns.
5. (15pts)
(a) Compute A^{8}, where $A=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$.
(b) Let $A=\left[\begin{array}{cc}-3 & 12 \\ -2 & 7\end{array}\right]$. If $\mathbf{x}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ are eigenvectors of A, use this information to diagonalize A. That is, write down $A=S D S^{-1}$, where D is a diagonal matrix.
6. (15pts)
(a) Substitute $A=S \Lambda S^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton theorem says that this product is always $p(A)=$ zero matrix, even if A is not diagonalizable.
(b) For a 3 by 3 matrix A, the Cayley-Hamilton theorem gives a matrix equation of the form $A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I=0$. From this equation, you can get an expression of A^{-1}. Use the Cayley-Hamilton theorem to compute A^{-1},
where $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.
