Linear Algebra

Problem Set 8

Due Thursday, 28 May 2015 at 4:20 PM in EE106. This problem set covers Lecture 32-35. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$. Find the eigenvalues and corresponding eigenvectors of A. What are the eigenvalues and corresponding eigenvectors of $A+3 I$? What are the eigenvalues and corresponding eigenvectors of A^{10} ?
2. (15pts) Find the eigenvalues of the following matrices.
(a) $A=\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$ (Hint: what is the rank of A ?)
(b) $B=\left[\begin{array}{llll}0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}\right]$ (Hint: what is the relationship between A and B ?)
(c) $C=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$ (Hint: trace is helpful.)
3. (20pts) A 3 by 3 matrix A is known to have eigenvalues $0,1,-1$. Use this information to find the values of the following items (give the answers where possible):
(a) The rank of $A+I$
(b) The eigenvalues of $A^{T} A$
(c) The eigenvalues of $(A+2 I)^{-1}$
(d) The eigenvalues of $\left(A^{2}+I\right)^{2}$
(e) The determinant of $3 A-2 I$
(f) The determinant of $B^{-1} A B$
(g) The determinant of $A^{2}+A$
(h) The trace of $A+2 I$
(i) The trace of $3 A+4 A^{T}$
(j) The trace of $B^{-1} A B$
4. (20pts) True or false. Justify your answer. Suppose A is 3 by 3 .
(a) If 0 is an eigenvalue of A, then A is singular.
(b) If $A^{2}=0$, then the only eigenvalue of A is 0 .
(c) A nonzero vector cannot be the eigenvector corresponding to two different eigenvalues of A.
(d) If A has eigenvalues $0,0,0$, then $A=0$.
(e) Each eigenvector of A is also an eigenvector of A^{T}.
(f) If A has distinct eigenvalues, then A is diagonalizable.
(g) If A has eigenvalues 0,0 , and 1 , then the rank of A is 1 .
(h) If A has eigenvalues $0,0,1$, and A is not diagonalizable, then the rank of A is 2 .
(i) If A has eigenvalues 1,1 , and 1 , then A is not diagonalizable.
(j) If A is diagonalizable, then A^{T} is diagonalizable.
5. (20pts)
(a) Diagonalize $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]$ and derive the formula for A^{k}.
(b) The nth power of rotation through θ is rotation through $n \theta$:

$$
R^{n}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]^{n}=\left[\begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array}\right] .
$$

Prove this formula by diagonalizing $R=S \Lambda S^{-1}$. You need to know Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$.
(c) Substitute $A=S \Lambda S^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton theorem says that this product is always $p(A)=$ zero matrix, even if A is not diagonalizable. For example, if $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $p(A)=(I-A)^{2}=A^{2}-2 A+I=0$.
(d) Use the Cayley-Hamilton theorem to compute A^{-1}, where $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.
6. (10pts) Suppose G_{k+2} is the average of the two previous numbers G_{k+1} and G_{k}. Let
$\left[\begin{array}{c}G_{k+2} \\ G_{k+1}\end{array}\right]=A\left[\begin{array}{c}G_{k+1} \\ G_{k}\end{array}\right]$.
(a) Find the limit as $k \rightarrow \infty$ of the matrices $A^{k}=S \Lambda^{k} S^{-1}$.
(b) If $G_{0}=0$ and $G_{1}=1$, show that the Gibonacci numbers approach $\frac{2}{3}$.

