Linear Algebra Problem Set 8

Due Thursday, 28 May 2015 at 4:20 PM in EE106. This problem set covers Lecture 32-35. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$. Find the eigenvalues and corresponding

eigenvectors of A. What are the eigenvalues and corresponding eigenvectors of A+3I? What are the eigenvalues and corresponding eigenvectors of A¹⁰?
2. (15pts) Find the eigenvalues of the following matrices.

- 3. (20pts) A 3 by 3 matrix *A* is known to have eigenvalues 0,1,-1. Use this information to find the values of the following items (give the answers where possible):
 - (a) The rank of A + I
 - (b) The eigenvalues of $A^T A$
 - (c) The eigenvalues of $(A+2I)^{-1}$
 - (d) The eigenvalues of $(A^2 + I)^2$
 - (e) The determinant of 3A 2I
 - (f) The determinant of $B^{-1}AB$
 - (g) The determinant of $A^2 + A$
 - (h) The trace of A+2I
 - (i) The trace of $3A+4A^T$

- (j) The trace of $B^{-1}AB$
- 4. (20pts) True or false. Justify your answer. Suppose *A* is 3 by 3.
 - (a) If 0 is an eigenvalue of A, then A is singular.
 - (b) If $A^2=0$, then the only eigenvalue of A is 0.
 - (c) A nonzero vector cannot be the eigenvector corresponding to two different eigenvalues of *A*.
 - (d) If A has eigenvalues 0, 0, 0, then A=0.
 - (e) Each eigenvector of A is also an eigenvector of A^{T} .
 - (f) If A has distinct eigenvalues, then A is diagonalizable.
 - (g) If A has eigenvalues 0, 0, and 1, then the rank of A is 1.
 - (h) If *A* has eigenvalues 0, 0, 1, and *A* is not diagonalizable, then the rank of *A* is 2.
 - (i) If A has eigenvalues 1, 1, and 1, then A is not diagonalizable.
 - (j) If A is diagonalizable, then A^T is diagonalizable.

5. (20pts)

- (a) Diagonalize $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and derive the formula for A^k .
- (b) The *n*th power of rotation through θ is rotation through $n\theta$:

$$R^{n} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^{n} = \begin{bmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{bmatrix}.$$

Prove this formula by diagonalizing $R = S\Lambda S^{-1}$. You need to know Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$.

(c) Substitute $A = S\Lambda S^{-1}$ into the product $(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)$ and

explain why this produces the zero matrix. We are substituting the matrix *A* for the number λ in the polynomial $p(\lambda) = \det(A - \lambda I)$. The Cayley-Hamilton theorem says that this product is always p(A) = zero matrix, even if *A* is not diagonalizable. For example, if $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then $p(A) = (I - A)^2 = A^2 - 2A + I = 0$.

- (d) Use the Cayley-Hamilton theorem to compute A^{-1} , where $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- 6. (10pts) Suppose G_{k+2} is the average of the two previous numbers G_{k+1} and G_k . Let

$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = A \begin{bmatrix} G_{k+1} \\ G_k \end{bmatrix}.$$

- (a) Find the limit as $k \to \infty$ of the matrices $A^k = S\Lambda^k S^{-1}$.
- (b) If $G_0 = 0$ and $G_1 = 1$, show that the Gibonacci numbers approach $\frac{2}{3}$.