Linear Algebra Problem Set 8

Due Tuesday, 24 May 2016 at 12:00 PM in EE105. This problem set covers Lectures 32-35. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10%) For each of the following matrixes, find all eigenvalues and the corresponding (independent) eigenvectors.

(a)	4	5	(b)	[1	1	(α)	[1	1
	0	6	(0)	1	1	(C)	0	1

- 2. (15pts) Let A be an invertible $n \times n$ matrix and **x** an eigenvector of A with associated eigenvalue λ .
 - (a) Is **x** an eigenvector of A^2 ? If so, what is the eigenvalue?
 - (b) Is **x** an eigenvector of A^{-1} ? If so, what is the eigenvalue?
 - (c) Is **x** an eigenvector of A + 2I? If so, what is the eigenvalue?
 - (d) Is \mathbf{x} an eigenvector of 5A? If so, what is the eigenvalue?
 - (e) Is **x** an eigenvector of $A^2 + 2A + 3I$? If so, what is the eigenvalue?
- 3. (30pts) True or false. Give a reason or counterexample.
 - (a) If λ is an eigenvalue of A, then $N(A \lambda I) \neq \{0\}$.
 - (b) If λ is an eigenvalue of A, then λ is an eigenvalue of A^T .
 - (c) If **x** is an eigenvector of A with associated eigenvalue λ , then **x** is an eigenvector of A^T with associated eigenvalue λ .
 - (d) If **x** is an eigenvector of both A and B, then **x** is an eigenvector of A + B.
 - (e) If \mathbf{x} is an eigenvector of both A and B, then \mathbf{x} is an eigenvector of AB.
 - (f) If A is singular, then 0 is an eigenvalue of A.
 - (g) If $A^2=0$, then the only eigenvalue of A is 0.
 - (h) If A is a 3×3 matrix and has eigenvalues 0, 1, and 2, then the rank of A is 2.
 - (i) If A is a 3×3 matrix and has eigenvalues 0, 0, and 1, and A is not diagonalizable, then the rank of A is 2.
 - (j) If A is a 3×3 matrix and has eigenvalues 0, 1, and 1, then the rank of A is 2.
- 4. (15pts) Arguing geometrically, find all eigenvectors and eigenvalues the linear transformations below.
 - (a) Reflection about a line passing through (0,0) and (1,2) in \mathbb{R}^2 .
 - (b) Rotation through an angle of 180° in \mathbb{R}^2 .
 - (c) Orthogonal projection onto a line passing through (0,0) and (2,3) in \mathbb{R}^2 .

- 5. (20pts) Let $A = \frac{1}{4} \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$.
 - (a) Diagonalize A.
 - (b) Find the formula for A^k .
 - (c) What is $\lim_{k\to\infty} A^k$?
 - (d) As $k \to \infty$, is it true that $A^k \mathbf{x}$ approaches an eigenvector of A for any nonzero vector \mathbf{x} ?
- 6. (10pts) This problem is about Cayley-Hamilton theorem. Suppose *A* is diagonalizable.
 - (a) Substitute $A = S\Lambda S^{-1}$ into the product $(A \lambda_1 I)(A \lambda_2 I) \cdots (A \lambda_n I)$ and

explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda) = \det(A - \lambda I)$. The Cayley-Hamilton theorem says that this product is always p(A) = zero matrix, even if A is not diagonalizable.

(b) For a 3 by 3 matrix *A*, the Cayley-Hamilton theorem gives a matrix equation of the form $A^3 + a_2A^2 + a_1A + a_0I = 0$. From this equation, you can get an expression of A^{-1} . Use the Cayley-Hamilton theorem to compute A^{-1} ,

where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.