Linear Algebra

Problem Set 8
Spring 2016

Due Tuesday, 24 May 2016 at 12:00 PM in EE105. This problem set covers Lectures 32-35. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (10\%) For each of the following matrixes, find all eigenvalues and the corresponding (independent) eigenvectors.
(a) $\left[\begin{array}{ll}4 & 5 \\ 0 & 6\end{array}\right]$
(b) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
2. (15pts) Let A be an invertible $n \times n$ matrix and \mathbf{x} an eigenvector of A with associated eigenvalue λ.
(a) Is \mathbf{x} an eigenvector of A^{2} ? If so, what is the eigenvalue?
(b) Is \mathbf{x} an eigenvector of A^{-1} ? If so, what is the eigenvalue?
(c) Is \mathbf{x} an eigenvector of $A+2 I$? If so, what is the eigenvalue?
(d) Is \mathbf{x} an eigenvector of $5 A$? If so, what is the eigenvalue?
(e) Is \mathbf{x} an eigenvector of $A^{2}+2 A+3 I$? If so, what is the eigenvalue?
3. (30pts) True or false. Give a reason or counterexample.
(a) If λ is an eigenvalue of A, then $N(A-\lambda I) \neq\{\mathbf{0}\}$.
(b) If λ is an eigenvalue of A, then λ is an eigenvalue of A^{T}.
(c) If \mathbf{x} is an eigenvector of A with associated eigenvalue λ, then \mathbf{x} is an eigenvector of A^{T} with associated eigenvalue λ.
(d) If \mathbf{x} is an eigenvector of both A and B, then \mathbf{x} is an eigenvector of $A+B$.
(e) If \mathbf{x} is an eigenvector of both A and B, then \mathbf{x} is an eigenvector of $A B$.
(f) If A is singular, then 0 is an eigenvalue of A.
(g) If $A^{2}=0$, then the only eigenvalue of A is 0 .
(h) If A is a 3×3 matrix and has eigenvalues 0,1 , and 2 , then the rank of A is 2 .
(i) If A is a 3×3 matrix and has eigenvalues 0,0 , and 1 , and A is not diagonalizable, then the rank of A is 2 .
(j) If A is a 3×3 matrix and has eigenvalues 0,1 , and 1 , then the rank of A is 2 .
4. (15pts) Arguing geometrically, find all eigenvectors and eigenvalues the linear transformations below.
(a) Reflection about a line passing through $(0,0)$ and $(1,2)$ in \mathbb{R}^{2}.
(b) Rotation through an angle of 180° in \mathbb{R}^{2}.
(c) Orthogonal projection onto a line passing through $(0,0)$ and $(2,3)$ in \mathbb{R}^{2}.
5. (20pts) Let $A=\frac{1}{4}\left[\begin{array}{ll}2 & 3 \\ 2 & 1\end{array}\right]$.
(a) Diagonalize A.
(b) Find the formula for A^{k}.
(c) What is $\lim _{k \rightarrow \infty} A^{k}$?
(d) As $k \rightarrow \infty$, is it true that $A^{k} \mathbf{x}$ approaches an eigenvector of A for any nonzero vector \mathbf{x} ?
6. (10pts) This problem is about Cayley-Hamilton theorem. Suppose A is diagonalizable.
(a) Substitute $A=S \Lambda S^{-1}$ into the product $\left(A-\lambda_{1} I\right)\left(A-\lambda_{2} I\right) \cdots\left(A-\lambda_{n} I\right)$ and explain why this produces the zero matrix. We are substituting the matrix A for the number λ in the polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$. The Cayley-Hamilton theorem says that this product is always $p(A)=$ zero matrix, even if A is not diagonalizable.
(b) For a 3 by 3 matrix A, the Cayley-Hamilton theorem gives a matrix equation of the form $A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I=0$. From this equation, you can get an expression of A^{-1}. Use the Cayley-Hamilton theorem to compute A^{-1}, where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$.
