Due Thursday, 17 May 2012 at 4:30 PM in EE208. This problem set covers Lecture 28-30. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Section 5.1, Problem 3

True or false, with a reason if true or counterexample if false:
(a) The determinant of $I+A$ is $1+\operatorname{det} A$.
(b) The determinant of $A B C$ is $|A||B||C|$.
(c) The determinant of $4 A$ is $4|A|$.
(d) The determinant of $A B-B A$ is zero. Try an example with $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
2. (15pts) Section 5.1, Problem 17

A skew-symmetric matrix has $K^{T}=-K$. Show that $\left|\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right|=0$. Write
down a 4 by 4 example with $|K|=1$.
3. (15pts) Section 5.2, Problem 13

The n by n determinant C_{n} has 1 's above and below the main diagonal:
$C_{1}=|0| \quad C_{2}=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right| \quad C_{3}=\left|\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right| \quad C_{3}=\left|\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right|$
(a) What are these determinants $C_{1}, C_{2}, C_{3}, C_{4}$?
(b) By cofactors find the relation between C_{n} and C_{n-1} and C_{n-2}. Find C_{10}.
4. (15pts) Section 5.2, Problem 34

This problem shows in two ways that $\operatorname{det} A=0$ (the x 's are any numbers and they may not be the same):

$$
A=\left[\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x \\
0 & 0 & 0 & x & x
\end{array}\right]
$$

(a) How do you know that the rows are linearly dependent?
(b) Explain why all 120 terms are zero in the big formula (permutation formula) for $\operatorname{det} A$.
5. (20pts) Section 5.2, Problem 25

Block elimination subtracts $C A^{-1}$ times the first row $\left[\begin{array}{ll}A & B\end{array}\right]$ from the second row $\left[\begin{array}{ll}C & D\end{array}\right]$. This leaves the Schur complement $D-C A^{-1} A$ in the corner:

$$
\left[\begin{array}{cc}
I & 0 \\
-C A^{-1} & I
\end{array}\right]\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
A & B \\
0 & D-C A^{-1} B
\end{array}\right] .
$$

Take determinants of these block matrices to prove correct rules if A^{-1} exists:

$$
\left|\begin{array}{ll}
A & B \\
C & D
\end{array}\right|=|A| \cdot\left|D-C A^{-1} B\right|=|A D-C B| \text { provided } A C=C A .
$$

6. (20pts) Use determinants to answer the following questions.
(a) A box has edges from $(0,0,0)$ to $(1,1,2)$ and $(1,2,1)$ and $(2,1,1)$. Find its volume.
(b) Find the area of the parallelogram with sides from $(0,0,0)$ to $(1,1,1)$ and $(2,0,3)$.
(c) Find the area of the triangular with corners $(2,1,1),(1,2,1)$ an $(1,1,2)$.
