Linear Algebra

Problem Set 9

Due Tuesday, 4 June 2013 at 12:00 PM in EE208. This problem set covers Lecture 35-37. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (20pts) Let A be a 2 by 2 matrix with eigenvalues 3 and $1 / 3$ and corresponding eigenvectors $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. Let $\left\{\mathbf{u}_{k}, k=0,1,2, \ldots\right\}$ be a solution of the difference equation $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$, with $\mathbf{u}_{0}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$.
(a) Compute $\mathbf{u}_{1}=A \mathbf{u}_{0}$. (Hint: You do not need to know A itself.)
(b) Find a formula for \mathbf{u}_{k} in terms of k and the eigenvectors \mathbf{x}_{1} and \mathbf{x}_{2}.
(c) Is this dynamical system stable, unstable or neutrally stable? Determine the nature of the origin (attractor, repellor, or saddle point) of the dynamical system $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$.
(d) Plot the trajectory of the dynamical system $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$, with $\mathbf{u}_{0}=\left[\begin{array}{l}6 \\ 1\end{array}\right]$.
2. (15 pts) Let A be a 2 by 2 matrix with eigenvalues -1 and -3 and corresponding eigenvectors $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. Let $\{\mathbf{u}(t), t \geq 0\}$ be a solution of the differential equation $\frac{d \mathbf{u}}{d t}=A \mathbf{u}(t)$, with $\mathbf{u}(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
(a) Find a formula for $\mathbf{u}(t), t \geq 0$.
(b) Is this dynamical system stable, unstable or neutrally stable?
3. (10pts) Section 6.3, Problem 6
A has real eigenvalues but B has complex eigenvalues:
$A=\left[\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right] B=\left[\begin{array}{rr}b & -1 \\ 1 & b\end{array}\right] \quad(a$ and b are real). Find the conditions on a and b so that all solutions of $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ and $\frac{d \mathbf{v}}{d t}=B \mathbf{v}$ approach zero as $t \rightarrow \infty$.
4. (15pts) Section 6.3, Problem 26

Give two reasons why the matrix exponential $e^{A t}$ is never singular:
(a) Write down its inverse.
(b) Write down it eigenvalues. If $A \mathbf{x}=\lambda \mathbf{x}$ then $e^{A t} \mathbf{x}=$ \qquad \mathbf{x}.
5. (15pts) Section 6.3, Problem 31

The cosine of a matrix is defined like e^{A}, by copying the series for $\cos t$:
$\cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots \quad \cos A=I-\frac{A^{2}}{2!}+\frac{A^{4}}{4!}-\cdots$
(a) If $A \mathbf{x}=\lambda \mathbf{x}$, multiply each term times \mathbf{x} to find the eigenvalue of $\cos A$.
(b) Find the eigenvalues of $A=\left[\begin{array}{ll}\pi & \pi \\ \pi & \pi\end{array}\right]$ with eigenvectors (1,1) and $(1,-1)$.

From the eigenvalues and eigenvectors of $\cos A$, find that matrix $C=\cos A$.
6. (15pts) Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}4 & -2 \\ 1 & 6\end{array}\right]=S C S^{-1}$. Briefly explain the geometric interpretations of A using S and C.
7. (10pts) Let A be a real n by n matrix, and let \mathbf{x} be a vector in \mathbb{C}^{n}. Show that $\operatorname{Re}\{A \mathbf{x}\}=A \operatorname{Re}\{\mathbf{x}\}$ and $\operatorname{Im}\{A \mathbf{x}\}=A \operatorname{Im}\{\mathbf{x}\}$.

