Linear Algebra Problem Set 9

Due Thursday, 4 June 2015 at 4:20 PM in EE106. This problem set covers Lecture 36-38. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

- 1. (15pts) Let $A = \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix}$. Let $\{\mathbf{u}(t), t \ge 0\}$ be a solution of the differential equation $\frac{d\mathbf{u}}{dt} = A\mathbf{u}(t)$, with $\mathbf{u}(0) = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$.
 - (a) Find a formula for $\mathbf{u}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2, t \ge 0.$
 - (b) Is this dynamical system stable, unstable or neutrally stable?
 - (c) Find e^{At} .
- 2. (15pts)
 - (a) Give two reasons why the matrix exponential e^{At} is never singular: write down its inverse and write down it eigenvalues. If $A\mathbf{x} = \lambda \mathbf{x}$ then $e^{At}\mathbf{x} = \underline{\qquad} \mathbf{x}$.
 - (b) When A is skew-symmetric ($A^T = -A$), $Q = e^{At}$ is orthogonal. Prove $Q^T = e^{-At}$ from the series for $Q = e^{At}$. Then show that $Q^TQ = I$.
- 3. (15pts) The cosine of a matrix is defined like e^A , by copying the series for $\cos t$:

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} - \dots \quad \cos A = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \dots$$

- (a) If $A\mathbf{x} = \lambda \mathbf{x}$, multiply each term times \mathbf{x} to find the eigenvalue of $\cos A$. (b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, find that matrix $C = \cos A$.
- 4. (15pts)
 - (a) Find an invertible matrix *S* and a matrix *C* of the form $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that the given matrix has the form $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix} = SCS^{-1}$. Briefly explain

the geometric interpretations of A using S and C.

- (b) Let $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ (*a* and *b* are real). Find the conditions on *a* and *b* so that all solutions of $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ approach zero as $t \to \infty$.
- 5. (20pts) Show that A and B are similar by finding M so that $B = M^{-1}AM$.

(a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$
(b) $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$
(c) $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
(d) $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$.

- 6. (20pts) True or false, with a good reason.
 - (a) A can't be similar to A^{-1} unless A=I.
 - (b) A can't be similar to A+I.
 - (c) If *B* is invertible, then *AB* is similar to *BA*.
 - (d) If A is similar to B, then A^2 is similar to B^2 .
 - (e) A^2 and B^2 can be similar when A and B are not similar (try $\lambda = 0, 0$).