Linear Algebra

Problem Set 9

Due Thursday, 4 June 2015 at 4:20 PM in EE106. This problem set covers Lecture 36-38. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) Let $A=\left[\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right]$. Let $\{\mathbf{u}(t), t \geq 0\}$ be a solution of the differential equation $\frac{d \mathbf{u}}{d t}=A \mathbf{u}(t)$, with $\mathbf{u}(0)=\left[\begin{array}{r}5 \\ -2\end{array}\right]$.
(a) Find a formula for $\mathbf{u}(t)=c_{1} e^{\lambda_{1} t} \mathbf{x}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{x}_{2}, t \geq 0$.
(b) Is this dynamical system stable, unstable or neutrally stable?
(c) Find $e^{A t}$.
2. (15pts)
(a) Give two reasons why the matrix exponential $e^{A t}$ is never singular: write down its inverse and write down it eigenvalues. If $A \mathbf{x}=\lambda \mathbf{x}$ then $e^{A t} \mathbf{x}=$ \qquad x.
(b) When A is skew-symmetric ($A^{T}=-A$), $Q=e^{A t}$ is orthogonal. Prove $Q^{T}=e^{-A t}$ from the series for $Q=e^{A t}$. Then show that $Q^{T} Q=I$.
3. (15pts) The cosine of a matrix is defined like e^{A}, by copying the series for $\cos t$: $\cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots \quad \cos A=I-\frac{A^{2}}{2!}+\frac{A^{4}}{4!}-\cdots$
(a) If $A \mathbf{x}=\lambda \mathbf{x}$, multiply each term times \mathbf{x} to find the eigenvalue of $\cos A$.
(b) If $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, find that matrix $C=\cos A$.
4. (15pts)
(a) Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right]=S C S^{-1}$. Briefly explain the geometric interpretations of A using S and C.
(b) Let $A=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ (a and b are real). Find the conditions on a and b so that all solutions of $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ approach zero as $t \rightarrow \infty$.
5. (20pts) Show that A and B are similar by finding M so that $B=M^{-1} A M$.
(a) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$
(d) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$.
6. (20pts) True or false, with a good reason.
(a) A can't be similar to A^{-1} unless $A=I$.
(b) A can't be similar to $A+I$.
(c) If B is invertible, then $A B$ is similar to $B A$.
(d) If A is similar to B, then A^{2} is similar to B^{2}.
(e) A^{2} and B^{2} can be similar when A and B are not similar (try $\lambda=0,0$).
