Due Thursday, 2 June 2016 at 4:20 PM in EE105. This problem set covers Lectures 36-38. Free feel to work with others, but the final write-up should be entirely based on your own understanding. Be sure to print your name and student ID on your homework.

1. (15pts) A door is opened between rooms that hold $v(0)=40$ people and $w(0)=10$ people. The movement between rooms is proportional to the difference $v-w$:

$$
\frac{d v}{d t}=w-v \text { and } \frac{d w}{d t}=v-w .
$$

(a) Show that the total is constant (50 people).
(b) Find the matrix in $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ and its eigenvalues and eigenvectors.
(c) What are v and w at $t=1$?
2. (10pts) When A is skew-symmetric $\left(A^{T}=-A\right), Q=e^{A t}$ is orthogonal. Prove $Q^{T}=e^{-A t}$ from the series for $Q=e^{A t}$. Then $Q^{T} Q=I$.
3. (10pts) If $A^{2}=A$, show that $e^{A t}=I+\left(e^{t}-1\right) A$. Use this result to compute $e^{B t}$, where $B=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$.
4. (30pts) True or false. Give a reason or counterexample.
(a) It is possible that A is similar to $A+I$.
(b) If A is invertible and B is similar to A, then B is also invertible.
(c) If A is similar to B, then A^{2} is similar to B^{2}.
(d) If A^{2} is similar to B^{2}, then A is similar to B.
(e) If A is invertible, then $A B$ is similar to $B A$.
(f) $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$.
(g) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
(h) $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
(i) $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
(j) $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
5. (15pts) The cosine of a matrix is defined like e^{A}, by copying the series for $\cos t$:
$\cos t=1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\cdots \quad \cos A=I-\frac{A^{2}}{2!}+\frac{A^{4}}{4!}-\cdots$
(a) If $A \mathbf{x}=\lambda \mathbf{x}$, multiply each term times \mathbf{x} to find the eigenvalue of $\cos A$.
(b) Find the eigenvalues of $A=\left[\begin{array}{ll}\pi & \pi \\ \pi & \pi\end{array}\right]$ with eigenvectors (1,1) and ($1,-1$). From the eigenvalues and eigenvectors of $\cos A$, find that matrix $C=\cos A$.
6. (10pts) Find an invertible matrix S and a matrix C of the form $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $A=\left[\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right]=S C S^{-1}$.
7. (10pts) A has real eigenvalues but B has complex eigenvalues:
$A=\left[\begin{array}{ll}a & 1 \\ 1 & a\end{array}\right] \quad B=\left[\begin{array}{rr}b & -1 \\ 1 & b\end{array}\right]$ (a and b are real). Find the conditions on a and b so that all solutions of $\frac{d \mathbf{u}}{d t}=A \mathbf{u}$ and $\frac{d \mathbf{v}}{d t}=B \mathbf{v}$ approach zero as $t \rightarrow \infty$.

