2013 spring HW10

1.

(a) $\mathrm{B}=\mathrm{M}^{-1} \mathrm{AM} \Rightarrow \mathrm{A}=\mathrm{MBM}^{-1}$
$\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right] \Rightarrow \lambda_{1}=3, \lambda_{2}=1 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{-1}=\mathrm{MBM}^{-1} \Rightarrow \mathrm{M}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b)
$\mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right] \Rightarrow \lambda_{1}=1, \lambda_{2}=0 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
$A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]^{-1}=\mathrm{MBM}^{-1} \Rightarrow \mathrm{M}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$
(c)
$\mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \Rightarrow \lambda_{1}=2, \lambda_{2}=0 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \Rightarrow \mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]^{-1}$
$\mathrm{B}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right] \Rightarrow \lambda_{1}=2, \lambda_{2}=0 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{c}-1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \Rightarrow \mathrm{B}=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]^{-1}$
$\mathrm{A}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left(\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]^{-1} \mathrm{~B}\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\right)\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]^{-1}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \mathrm{B}\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]^{-1}$
$\Rightarrow \mathrm{M}=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
(d)
$\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \Rightarrow \lambda^{2}-5 \lambda-2=0 \Rightarrow \lambda_{1}, \lambda_{2} \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{c}2 \\ \lambda_{1}-1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{c}\lambda_{2}-4 \\ 3\end{array}\right]$
$\Rightarrow \mathrm{A}=\left[\begin{array}{cc}2 & \lambda_{2}-4 \\ \lambda_{1}-1 & 3\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{cc}2 & \lambda_{2}-4 \\ \lambda_{1}-1 & 3\end{array}\right]^{-1}$
$\mathrm{B}=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right] \Rightarrow \lambda^{2}-5 \lambda-2=0 \Rightarrow \lambda_{1}, \lambda_{2} \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{c}\lambda_{1}-1 \\ 2\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{c}3 \\ \lambda_{2}-4\end{array}\right]$
$\Rightarrow \mathrm{B}=\left[\begin{array}{cc}\lambda_{1}-1 & 3 \\ 2 & \lambda_{2}-4\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{cc}\lambda_{1}-1 & 3 \\ 2 & \lambda_{2}-4\end{array}\right]^{-1}$
$\mathrm{A}=\left[\begin{array}{cc}2 & \lambda_{2}-4 \\ \lambda_{1}-1 & 3\end{array}\right]\left(\left[\begin{array}{cc}\lambda_{1}-1 & 3 \\ 2 & \lambda_{2}-4\end{array}\right]^{-1} B\left[\begin{array}{cc}\lambda_{1}-1 & 3 \\ 2 & \lambda_{2}-4\end{array}\right]\right)\left[\begin{array}{cc}2 & \lambda_{2}-4 \\ \lambda_{1}-1 & 3\end{array}\right]^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \mathrm{B}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]^{-1}$
$\Rightarrow \mathrm{M}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
2.
similar matrices have the same eigenvalues.
\Rightarrow The matrices have different eigenvalues are not similar.
<case1: $\lambda=0,0$ >
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ this matrix is the only one in the family.
$\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$,they are in the same family.
<case2: $\lambda=1,0$ >
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]$ they are in the same family.
<case3: $\lambda=1,1$ >
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ this matrix is the only one in the family.
$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ they are in the same family.
<case4: $\lambda=1,-1>$
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$<$ case5: $\lambda=2,0>$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$<$ case6: $\lambda=\frac{1 \pm \sqrt{5}}{2}>$
$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ they are in the same family.
\Rightarrow There are 8 families.
3.
(a)False
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is similar to $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
(b)True

Invertible matrix doesn't have $\lambda=0$, but sigular matrix has $\lambda=0$.
\Rightarrow The matrices have different eigenvalues are not similar.
(c)False
$A=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$ is similar to $-A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d)True
eigenvalues of $\mathrm{A} \neq$ eigenvalues of $\mathrm{A}+\mathrm{I}$
(e)True
$A B=B^{-1}(B A) B$
(f)True
$\mathrm{A}=\mathrm{MBM}^{-1} \Rightarrow \mathrm{~A}^{2}=\left(\mathrm{MBM}^{-1}\right)\left(\mathrm{MBM}^{-1}\right)=\mathrm{MB}^{2} \mathrm{M}^{-1}$
(g)True
$\mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], \mathrm{A}^{2}=\mathrm{B}^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
A^{2} are similar to B^{2}, but A is not similar to B.
4.
(a)
$\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] \Rightarrow \lambda_{1}=2, \lambda_{2}=4 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \Rightarrow \mathrm{q}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathrm{q}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$\mathrm{A}=2\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]\right)\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & -1\end{array}\right]\right)+4\left(\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)\left(\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$
$\mathrm{B}=\left[\begin{array}{cc}9 & 12 \\ 12 & 16\end{array}\right] \Rightarrow \lambda_{1}=0, \lambda_{2}=25 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{c}4 \\ -3\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right] \Rightarrow \mathrm{q}_{1}=\frac{1}{5}\left[\begin{array}{c}4 \\ -3\end{array}\right], \mathrm{q}_{2}=\frac{1}{5}\left[\begin{array}{l}3 \\ 4\end{array}\right]$
$B=25\left(\frac{1}{5}\left[\begin{array}{l}3 \\ 4\end{array}\right]\right)\left(\frac{1}{5}\left[\begin{array}{ll}3 & 4\end{array}\right]\right)$
(b)
$P_{1}+P_{2}=q_{1} q_{1}{ }^{T}+q_{2} q_{2}{ }^{T}=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]\left[\begin{array}{l}q_{1}{ }^{\mathrm{T}} \\ \mathrm{q}_{2}{ }^{\mathrm{T}}\end{array}\right]=\mathrm{QQ}^{\mathrm{T}}=\mathrm{I}$
$\mathrm{P}_{1} \mathrm{P}_{2}=\mathrm{q}_{1} \mathrm{q}_{1}{ }^{\mathrm{T}} \mathrm{q}_{2} \mathrm{q}_{2}{ }^{\mathrm{T}}=\mathrm{q}_{1}\left(\mathrm{q}_{1}{ }^{\mathrm{T}} \mathrm{q}_{2}\right) \mathrm{q}_{2}{ }^{\mathrm{T}}=0\left(\because \mathrm{q}_{1} \perp \mathrm{q}_{2}\right)$
5.
(a)False
$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ eigenvalues are 1,1 ; eigenvector is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$; but it is not symmetric.
(b)True
$\mathrm{A}=\mathrm{Q} \Lambda \mathrm{Q}^{-1}=\mathrm{Q} \Lambda \mathrm{Q}^{\mathrm{T}} ; \mathrm{A}^{\mathrm{T}}=\left(\mathrm{Q} \Lambda \mathrm{Q}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{Q} \Lambda^{\mathrm{T}} \mathrm{Q}^{\mathrm{T}}=\mathrm{Q} \Lambda \mathrm{Q}^{\mathrm{T}}=\mathrm{A}$
(c)True
$A=A^{T} ; A^{-1}=\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
(d)False
$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \Rightarrow \lambda_{1}=2, \lambda_{2}=0 \Rightarrow \mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathrm{x}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right] \Rightarrow \mathrm{S}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ which is not symmetric.
6.
$\operatorname{det}\left(\mathrm{A}_{1}\right)=c>0$
$\operatorname{det}\left(\mathrm{A}_{2}\right)=c^{2}-1>0 \Rightarrow c>1$ or $c<-1$
$\operatorname{det}\left(\mathrm{A}_{3}\right)=c^{3}-3 c+2=(c-1)^{2}(c+2)>0 \Rightarrow c>-2$
\Rightarrow If $c>1$, it is positive definite.
$\operatorname{det}\left(\mathrm{B}_{1}\right)=1>0$
$\operatorname{det}\left(\mathrm{B}_{2}\right)=d-4>0 \Rightarrow d>4$
$\operatorname{det}\left(\mathrm{B}_{3}\right)=12-4 d>0 \Rightarrow d<3$
$\Rightarrow d$ doesn't exist. \Rightarrow it isn't positive definite.
7.
(a)

A is positive deinite \Leftrightarrow All n eigenvalues of A are positive, $\lambda_{i}>0$ $\operatorname{det}(\mathrm{A})=\lambda_{1} \lambda_{2} \ldots \ldots . \lambda_{n}>0 \Rightarrow \mathrm{~A}$ is invertible .
(b)
A is positive deinite if $x^{T} A x>0$ for all $x \neq 0$. Here we choose $x=\left[\begin{array}{llllll}0 & 0 & \cdots & 1 & \cdots & 0\end{array}\right]^{T}$ diagonal entries $=\left[\begin{array}{llllll}0 & 0 & \cdots & 1 & \cdots & 0\end{array}\right] \mathrm{A}\left[\begin{array}{llllll}0 & 0 & \cdots & 1 & \cdots & 0\end{array}\right]^{\mathrm{T}}>0$
(c)

All projection matrice are singular except I.
(d)

All diagonal entries are eigenvalues. \because diagonal entries are positive. $\therefore \lambda_{i}>0$
All n eigenvalues of A are positive, $\lambda_{i}>0 \Leftrightarrow A$ is positive deinite.
(e)
$\operatorname{det}(\mathrm{A})=\lambda_{1} \lambda_{2} \ldots \ldots \lambda_{n}>0$, but λ_{i} might be negative. \Rightarrow It might not be positive deinite.

