2013 spring HW3

1.

(a) True
$\because \mathrm{A}$ is symmetric. $\therefore \mathrm{A}=\mathrm{A}^{\mathrm{T}} \quad \because \mathrm{AA}=\mathrm{AA}^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=(\mathrm{AA})^{\mathrm{T}} \quad \therefore \mathrm{AA}$ is still symmetric.
$\Rightarrow \mathrm{A}^{\mathrm{k}}=\mathrm{AA} \ldots \mathrm{A}=\left(\mathrm{A}^{\mathrm{k}}\right)^{\mathrm{T}}$ is symmetric.
(b) True
$\because\left[\begin{array}{ll}B & A \\ A & B\end{array}\right]^{T}=\left[\begin{array}{ll}B^{T} & A^{T} \\ A^{T} & B^{T}\end{array}\right]=\left[\begin{array}{ll}B & A \\ A & B\end{array}\right] \therefore\left[\begin{array}{ll}B & A \\ A & B\end{array}\right]$ is symmetric.
(c) True
$\because(\mathrm{ABA})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}} \mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}=\mathrm{ABA} \therefore \mathrm{ABA}$ is symmetric.
(d) False

Suppose $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right], \mathrm{ABAB}=\left[\begin{array}{ll}19 & 35 \\ 14 & 26\end{array}\right]$ which is not symmetric.
(e) True
$\because A B$ are symmetric. $\therefore A=A^{T}, B=B^{T} \quad \therefore A+B=A^{T}+B^{T}=(A+B)^{T} \quad A+B$ is symmetric.
$\Rightarrow\left((\mathrm{A}+\mathrm{B})^{2}\right)^{\mathrm{T}}=((\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B}))^{\mathrm{T}}=(\mathrm{A}+\mathrm{B})^{\mathrm{T}}(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{B})=(\mathrm{A}+\mathrm{B})^{2}$
$\Rightarrow(\mathrm{A}+\mathrm{B})^{2}$ is symmetric
2.
$B=\left[\begin{array}{cc}I_{n} & A \\ A^{T} & 0\end{array}\right]=L U=\left[\begin{array}{cc}I_{n} & 0 \\ A^{T} & I_{n}\end{array}\right]\left[\begin{array}{cc}I_{n} & A \\ 0 & -A^{T} A\end{array}\right]=L D L^{T}=\left[\begin{array}{cc}I_{n} & 0 \\ A^{T} & I_{n}\end{array}\right]\left[\begin{array}{cc}I_{n} & 0 \\ 0 & -A^{T} A\end{array}\right]\left[\begin{array}{cc}I_{n} & A \\ 0 & I_{n}\end{array}\right]$
B is invertible.
$\Leftrightarrow B^{-1}=\left(L D L L^{T}\right)^{-1}=\left[\begin{array}{cc}I_{n} & -A \\ 0 & I_{n}\end{array}\right]\left[\begin{array}{cc}I_{n} & 0 \\ 0 & \left(-A^{T} A\right)^{-1}\end{array}\right]\left[\begin{array}{cc}I_{n} & 0 \\ -A^{T} & I_{n}\end{array}\right]$ exist.
$\Leftrightarrow\left(-A^{T} A\right)^{-1}=-A^{-1}\left(A^{-1}\right)^{T}$ exist.
$\Leftrightarrow A^{-1}$ exist.
$\Leftrightarrow \mathrm{A}$ is invertible.
3.
$A=B+C \Rightarrow A^{T}=B^{T}+C^{T}=B-C \Rightarrow\left\{\begin{array}{l}B=\frac{A+A^{T}}{2} \\ C=\frac{A-A^{T}}{2}\end{array} \Rightarrow B C\right.$ always exist.
$\Rightarrow \mathrm{A}$ can be decomposed as $\mathrm{A}=\mathrm{B}+\mathrm{C}$.
4.
(a) $\mathrm{P}=\mathrm{P}_{32} \mathrm{P}_{21}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \mathrm{P}^{3}=\mathrm{I}$
(b) $\mathrm{P}=\left[\begin{array}{llll}\mathrm{P}_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \mathrm{P}_{3} \\ 0 & 0 & \end{array}\right]$ which $\mathrm{P}_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \mathrm{P}_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \mathrm{P}=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0\end{array}\right], \mathrm{P}^{6}=\mathrm{I}$
5.
(a) Yes
(b) No , Let $\mathrm{V}=\left\{\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right) \mid \mathrm{b}_{1}=1\right\},(1,1,1) \in \mathrm{V}$, but $2(1,1,1)=(2,2,2) \notin \mathrm{V}$
(c) No , Let $V=\left\{\left(b_{1}, b_{2}, b_{3}\right) \mid b_{1} b_{2} b_{3}=0\right\},(0,1,1) \in V,(1,0,0) \in V$ but $(0,1,1)+(1,0,0)=(1,1,1) \notin \mathrm{V}$
(d) Yes
(e) Yes
(f) No , Let $\mathrm{V}=\left\{\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right) \mid \mathrm{b}_{1} \leq \mathrm{b}_{2} \leq \mathrm{b}_{3}\right\},(1,2,3) \in \mathrm{V}$, but $-1(1,2,3)=(-1,-2,-3) \notin \mathrm{V}$
6.
(a) Yes

1. A and B are symmetric $\in M\left(A^{T}=A\right)$
$\Rightarrow A+B=A^{T}+B^{T}=(A+B)^{T}$ is also symmetric $\in M$
2. $c \in R \Rightarrow c A=c A^{T}$ is symmetric $\in M$
(b) Yes
3. A and B are skew-symmetric $\in M\left(A^{T}=-A\right)$
$\Rightarrow(\mathrm{A}+\mathrm{B})^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}+\mathrm{B}^{\mathrm{T}}=-\mathrm{A}-\mathrm{B}=-(\mathrm{A}+\mathrm{B})$ is also skew-symmetric $\in \mathrm{M}$
4. $\mathrm{c} \in \mathrm{R} \Rightarrow \mathrm{cA}^{\mathrm{T}}=$-cA is skew-symmetric $\in \mathrm{M}$
(c) No
A and B are unsymmetric $\in M\left(A^{T} \neq A\right)$, but $A+B$ might be a symmetric matrix.
$\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right] \in \mathrm{M}, \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right] \in \mathrm{M}, \mathrm{A}+\mathrm{B}=\left[\begin{array}{ll}2 & 2 \\ 2 & 1\end{array}\right] \notin \mathrm{M}$
5.

$\mathrm{A}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{c}\end{array}\right]=\mathrm{aB}+\mathrm{bC}+\mathrm{cD}=\mathrm{a}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\mathrm{b}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+\mathrm{c}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

