
Solutions to Problem Set 4 

1. (a)(f) 

(b)The vector does not pass through the origin. 

(c)Let S={(x1,x2,x3,x4)|x1x3=0} 

    v1 = (1,0,0,0) S 

    v2 = (0,0,1,0) S 

    v1 + v2 =(1,0,1,0) S 

(d)Let S={(x1,x2,x3,x4)|x1 x2} 

   v1=(1,2,0,0) S 

   let c = -1  cv1=(-1,-2,0,0)S   

(e)The vector does not pass through the origin. 

 

2. 

(a)T 

(b)F 

   Let s1=(1,1,1)  S T   t1=(1,2,3)  S T 

       s1+ t1=(2,3,4) 
 S T 

(c)T 

 

3. 

(a)T 

N(2A)=N(A) 
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4. 

(a)The nullspace of B = A A  contains all vector x=
y

y

 
  

 for y in R4. 

(b) if Cx =  
 
 
 x = 0 ,then Ax = 0 and Bx = 0 

    So N(C) = N(A) N(B) 

 

5. 

(a)solution x = xh+xp = span{
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→So we can know that xp=0  

→b=0 
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→We can get an A = 
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Matrix N=
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(d)Let S = C(N) = span{
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 = span{m,n} 
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 = span{u,v}       c1,c2,c3,c4 R 

    

Let t   T = au + bv   a,b R 

            = (
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   Let s   S =cm + dn     c,d  R 

             =(5m + 2n) +(m + 2n) = c3
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thus  S⊆T , T⊆S ,  and therefore  S=T. 



6. 

(a)if r = m 

→R = [I F] 

→We can choose a matrix B to let the linear combination of the columns 

in R form an identity matrix I. 

→So it is obvious to show that B= 
 
 
 ,I is m by m and B is n by m. 

 

(b)if r = n 

→R = 
0

I 
 
 

 ,RT = [I 0] 

→RTCT = I.   We can also choose a matrix CT to let the linear combination 

of the columns in RT form an identity matrix I. 

→So it is obvious to show that C=[I D] , C is n by m. 

 

(c) 

 

→RT is n by m,I is r by r and FT is (n-r) by r. 

 

→The reduced row echelon form of RT = 
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T
R is n by n,I is r by r, F

T
 is (n-r) by r and F

T
F is (n-r) by (n-r) 
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→The reduced row echelon form of RTR=
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→But we do not know F ,so we cannot invert T
rI FF  to rI  . 

 →We cannot tell the reduced echelon form of RRT . 


