Solutions to Problem Set 4

1. (a)(f)
(b)The vector does not pass through the origin.
(c)Let $S=\left\{\left(x_{1}, x_{2}, X_{3}, x_{4}\right) \mid X_{1} X_{3}=0\right\}$

$$
\begin{aligned}
& \mathrm{v}_{1}=(1,0,0,0) \in \mathrm{S} \\
& \mathrm{v}_{2}=(0,0,1,0) \in \mathrm{S} \\
& \mathrm{v}_{1}+\mathrm{v}_{2} \notin=(1,0,1,0) \notin \mathrm{S}
\end{aligned}
$$

(d)Let $S=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1} \leq x_{2}\right\}$
$\mathrm{V}_{1}=(1,2,0,0) \in \mathrm{S}$
let $c=-1 \quad c v i=(-1,-2,0,0) \notin S$
(e)The vector does not pass through the origin.
2.
(a) T
(b) F

$$
\begin{aligned}
& \text { Let } s_{1}=(1,1,1) \in \text { SUT } \quad t_{1}=(1,2,3) \in S U T \\
& s_{1}+t_{1}=(2,3,4) \notin \operatorname{SUT}
\end{aligned}
$$

(c) T
3.
(a) T

$$
N(2 A)=N(A)
$$

(b) F

$$
e x: A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] A^{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\text { But } C(A) \neq\{0\}
$$

(c) F

$$
\begin{aligned}
& e x: A=\left[\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right] A^{2}=\left[\begin{array}{ll}
7 & 18 \\
27 & 70
\end{array}\right] \\
& \mathrm{C}(\mathrm{~A}) \neq \mathrm{C}\left(\mathrm{~A}^{2}\right)
\end{aligned}
$$

(d) F
ex: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] A^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
But $N(A) \neq N\left(A^{2}\right)$
4.
(a) The nullspace of $\mathrm{B}=\left[\begin{array}{ll}A & A\end{array}\right]$ contains all vector $\mathrm{x}=\left[\begin{array}{c}y \\ -y\end{array}\right]$ for y in R^{4}.
(b) if $C x=\left[\begin{array}{l}A \\ B\end{array}\right] x=0$, then $A x=0$ and $B x=0$

So $N(C)=N(A) \cap N(B)$
5.
(a) solution $x=X_{n}+X_{p}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 5 \\ 2\end{array}\right]\left[\begin{array}{l}6 \\ 0 \\ 1 \\ 2\end{array}\right]\right\}$
\rightarrow So we can know that $\mathrm{X}_{\mathrm{p}}=0$
$\rightarrow b=0$
$\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 5 \\ 2\end{array}\right]\left[\begin{array}{l}6 \\ 0 \\ 1 \\ 2\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{c}-\frac{5}{4} \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}\frac{29}{8} \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
\rightarrow We can get an $A=\left[\begin{array}{rrcc}c_{1}(1 & 0 & \frac{5}{4} & \left.\frac{-29}{8}\right) \\ c_{2}(0 & 1 & 0 & 0\end{array}\right) \quad, c_{1} \quad c_{2} \in R$
(b) $\mathrm{R}=\left[\begin{array}{cccc}1 & 0 & \frac{5}{4} & -\frac{29}{8} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(c) $\mathrm{RX}=\left[\begin{array}{cccc}1 & 0 & \frac{5}{4} & -\frac{29}{8} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=0$
$X=\operatorname{span}\left\{\left[\begin{array}{c}-\frac{5}{4} \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}\frac{29}{8} \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$
Matrix $\mathrm{N}=\left[\begin{array}{cc}\frac{-5}{4} & \frac{29}{8} \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$
(d)Let $\mathrm{S}=\mathrm{C}(\mathrm{N})=\operatorname{span}\left\{\left[\begin{array}{c}-\frac{5}{4} \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{c}\frac{29}{8} \\ 0 \\ 0 \\ 1\end{array}\right]\right\}=\mathrm{c}_{1}\left[\begin{array}{c}\frac{-5}{4} \\ 0 \\ 1 \\ 0\end{array}\right]+\mathrm{c}_{2}\left[\begin{array}{c}\frac{29}{8} \\ 0 \\ 0 \\ 1\end{array}\right]=\operatorname{span}\{\mathrm{m}, \mathrm{n}\}$

$$
\mathrm{T}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
5 \\
2
\end{array}\right]\left[\begin{array}{l}
6 \\
0 \\
1 \\
2
\end{array}\right]\right\}=\mathrm{c}_{3}\left[\begin{array}{l}
1 \\
0 \\
5 \\
2
\end{array}\right]+\mathrm{c}_{4}\left[\begin{array}{l}
6 \\
0 \\
1 \\
2
\end{array}\right]=\operatorname{span}\{\mathrm{u}, \mathrm{v}\} \quad \quad \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4} \in \mathrm{R}
$$

Let $t \in T=a u+b v \quad a, b \in R$

$$
=\left(\frac{1}{4} c_{3} u-\frac{1}{4} c_{4} V\right)+\left(\frac{-1}{8} c_{3} u+\frac{5}{8} c_{4} V\right)=c_{1}\left[\begin{array}{c}
\frac{-5}{4} \\
0 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
\frac{29}{8} \\
0 \\
0 \\
1
\end{array}\right] \in S
$$

Let $s \in S=c m+d n \quad c, d \in R$

$$
=(5 m+2 n)+(m+2 n)=c_{3}\left[\begin{array}{l}
1 \\
0 \\
5 \\
2
\end{array}\right]+c_{4}\left[\begin{array}{l}
6 \\
0 \\
1 \\
2
\end{array}\right] \in T
$$

thus $S \subseteq T, T \subseteq S$, and therefore $S=T$.
6.
(a) if $r=m$
$\rightarrow \mathrm{R}=[\mathrm{IF}]$
\rightarrow We can choose a matrix B to let the linear combination of the columns in R form an identity matrix I .
\rightarrow So it is obvious to show that $B=\left[\begin{array}{l}I \\ 0\end{array}\right]$, I is m by m and B is n by m.
(b) if $r=n$
$\rightarrow \mathrm{R}=\left[\begin{array}{l}I \\ 0\end{array}\right], \mathrm{R}^{\mathrm{T}}=\left[\begin{array}{ll}\mathrm{I} & 0\end{array}\right]$
$\rightarrow R^{T} C^{T}=I$. We can also choose a matrix C^{T} to let the linear combination of the columns in R^{T} form an identity matrix I .
\rightarrow So it is obvious to show that $\mathrm{C}=[\mathrm{I}$ D] , C is n by m .
(c)
$R^{T}=\left[\begin{array}{cc}I & 0 \\ F^{T} & 0\end{array}\right]$
$\rightarrow R^{T}$ is n by m, I is r by r and F^{T} is ($\left.n-r\right)$ by r.
$\longrightarrow\left[\begin{array}{cc}I & 0 \\ F^{T} & 0\end{array}\right] \xrightarrow{R_{22}\left(-F^{T}\right)}\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$
\rightarrow The reduced row echelon form of $\mathrm{R}^{\mathrm{T}}=\left[\begin{array}{ll}I & 0 \\ 0 & 0\end{array}\right]$
(d)
$R^{T} R=\left[\begin{array}{cc}I & F \\ F^{T} & F^{T} F\end{array}\right]$
$\rightarrow R^{T} R$ is n by n, I is r by r, F^{T} is ($n-r$) by r and $F^{T} F$ is ($n-r$) by ($n-r$)
$\rightarrow R^{T} R=\left[\begin{array}{cc}I & F \\ F^{T} & F^{T} F\end{array}\right] \xrightarrow{R_{12}\left(-F^{T}\right)}\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$
\rightarrow The reduced row echelon form of $\mathrm{R}^{\mathrm{T}} \mathrm{R}=\left[\begin{array}{cc}I & F \\ 0 & 0\end{array}\right]$
(e)

$$
\begin{aligned}
R R^{T} & =\left[\begin{array}{ll}
I_{r} & F \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
I_{r} & 0 \\
F^{T} & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
I_{r}+F F^{T} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

\rightarrow But we do not know F , so we cannot invert $I_{r}+F F^{T}$ to I_{r}.
\rightarrow We cannot tell the reduced echelon form of R^{T}.

