1. (a)(f)

(b)The vector does not pass through the origin.

```
(c)Let S=\{(x_1, x_2, x_3, x_4) | x_1x_3=0\}

v_1 = (1, 0, 0, 0) \in S

v_2 = (0, 0, 1, 0) \in S

v_1 + v_2 \notin = (1, 0, 1, 0) \notin S

(d)Let S=\{(x_1, x_2, x_3, x_4) | x_1 \leq x_2\}

v_1=(1, 2, 0, 0) \in S

let c = -1 cv_1=(-1, -2, 0, 0) \notin S
```

(e)The vector does not pass through the origin.

```
2.

(a)T

(b)F

Let s_1=(1,1,1) \in S\cup T t_1=(1,2,3) \in S\cup T

s_1+ t_1=(2,3,4) \notin S\cup T

(c)T

3.

(a)T

N(2A)=N(A)

(b)F

ex: A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}

But C(A) \neq \{0\}

(c)F

ex: A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix} A^2 = \begin{bmatrix} 7 & 18 \\ 27 & 70 \end{bmatrix}

C(A) \neq C(A^2)
```

(d)F

$$ex: A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

But $N(A) \neq N(A^{2})$
4.
(a) The nullspace of B = $\begin{bmatrix} A & A \end{bmatrix}$ contains all vector $x = \begin{bmatrix} y \\ -y \end{bmatrix}$ for y in R¹.
(b) if $Cx = \begin{bmatrix} A \\ B \end{bmatrix} x = 0$, then $Ax = 0$ and $Bx = 0$
So N(C) = N(A) ON(B)
5.
(a) solution $\mathbf{x} = x_{0} + x_{0} = \text{span} \{ \begin{bmatrix} 0 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 2 \end{bmatrix} \}$
 \Rightarrow So we can know that $x = 0$
 $\Rightarrow b = 0$
 $span \{ \begin{bmatrix} 1 \\ 0 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 2 \end{bmatrix} \} = span \{ \begin{bmatrix} -\frac{5}{4} \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{29}{8} \\ 0 \\ 1 \\ 0 \end{bmatrix} \}$
 \Rightarrow We can get an $A = \begin{bmatrix} c_{1}(1 & 0 & \frac{5}{4} - \frac{29}{8}) \\ c_{2}(0 & 1 & 0 & 0) \\ 0 & 0 & 0 & 0 \end{bmatrix}$, $c_{1} = c_{2} \in \mathbb{R}$
(b) $\mathbb{R} = \begin{bmatrix} 1 & 0 & \frac{5}{4} - \frac{29}{8} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$(c)RX = \begin{bmatrix} 1 & 0 & \frac{5}{4} & -\frac{29}{8} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = 0$$

$$X = \text{span} \left\{ \begin{bmatrix} -\frac{5}{4} \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} \frac{29}{8} \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

$$Mat \text{ rix } N = \begin{bmatrix} -\frac{5}{4} \\ \frac{29}{8} \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{5}{4} \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 29 \\ 8 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} = c_1 \begin{bmatrix} -\frac{5}{4} \\ 0 \\ 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} \frac{29}{8} \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \text{ span}\{m, n\}$$

$$T = \text{ span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 5 \\ 2 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 2 \end{bmatrix} \right\} = c_3 \begin{bmatrix} \frac{1}{9} \\ 0 \\ 1 \\ 0 \end{bmatrix} = \text{ span}\{u, v\}$$

$$c_{1, c_2, c_3, c_4 \in \mathbb{R} \}$$

Let $t \in T = au + bv$ $a, b \in R$

$$= \left(\frac{1}{4}c_{3}u - \frac{1}{4}c_{4}v\right) + \left(\frac{-1}{8}c_{3}u + \frac{5}{8}c_{4}v\right) = c_{1}\begin{bmatrix}\frac{-5}{4}\\0\\1\\0\end{bmatrix} + c_{2}\begin{bmatrix}\frac{29}{8}\\0\\0\\1\end{bmatrix} \in S$$

Let $s \in S = cm + dn$ $c, d \in R$

$$=(5m + 2n) + (m + 2n) = c_{3} \begin{bmatrix} 1 \\ 0 \\ 5 \\ 2 \end{bmatrix} + c_{4} \begin{bmatrix} 6 \\ 0 \\ 1 \\ 2 \end{bmatrix} \in T$$

thus $S{\subseteq}T$, $T{\subseteq}S$, and therefore $S{=}T.$

6.
(a) if r = m
→R = [I F]
→We can choose a matrix B to let the linear combination of the columns in R form an identity matrix I.

 \rightarrow So it is obvious to show that $B = \begin{bmatrix} I \\ 0 \end{bmatrix}$, I is m by m and B is n by m.

(b) if r = n $\rightarrow R = \begin{bmatrix} I \\ 0 \end{bmatrix}$, $R^{T} = [I \ 0]$ $\rightarrow R^{T}C^{T} = I$. We can also choose a matrix C^{T} to let the linear combination of the columns in R^{T} form an identity matrix I. \rightarrow So it is obvious to show that C=[I D], C is n by m.

(c)

$$R^{T} = \begin{bmatrix} I & \mathbf{0} \\ F^{T} \mathbf{0} \end{bmatrix}$$
$$\rightarrow R^{T} \text{ is n by m, I}$$

 $\rightarrow R^{T}$ is n by m, I is r by r and F^{T} is (n-r) by r.

$$\longrightarrow \begin{bmatrix} I & \mathbf{0} \\ F^T & \mathbf{0} \end{bmatrix} \xrightarrow{R_{l2}(-F^T)} \begin{bmatrix} I & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 \rightarrow The reduced row echelon form of $R^{T} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$

(d)

$$R^{T}R = \begin{bmatrix} I & F \\ F^{T} & F^{T}F \end{bmatrix}$$

 $\rightarrow R^{T}R$ is n by n, I is r by r, F^{T} is (n-r) by r and $F^{T}F$ is (n-r) by (n-r)

$$\rightarrow R^{T}R = \begin{bmatrix} I & F \\ F^{T} & F^{T}F \end{bmatrix} \xrightarrow{R_{12}(-F^{T})} \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$

 \rightarrow The reduced row echelon form of $\mathbb{R}^{\mathsf{T}}\mathbb{R}=\begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$

(e)

$$RR^{T} = \begin{bmatrix} I_{r} & F \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{r} & 0 \\ F^{T} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} I_{r} + FF^{T} & 0 \\ 0 & 0 \end{bmatrix}$$

 \rightarrow But we do not know F , so we cannot invert $I_r + FF^T$ to I_r . \rightarrow We cannot tell the reduced echelon form of RR^T.