
Linear Algebra 

Problem Set 4 Solution           Spring 2015 
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假設以下矩陣皆為  nm
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(b)  ,C(A) = span{ , } , C(A
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(c) impossible, the matrix is 3 by 2, by rank-nullity theorem, n = rank + nullity. 

   rank , dimN , rank + nullity1 2 3 2  

 

(d) impossible, the matrix is m by 3, n = 3. 

 Row space has basis [1 0 0] rank =1. 
 nullspace has basis [1 1 1]T  dimN =1. 
 by rank-nullity theorem, rank+ dimN=1 + 1 = 2 n  

 

(e)  , C(A) = span{ }=R(A) 
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(b) 

 Let 3x , 4x . 

 21 x ,   22x   

 x=

(c) 

 N(A) = span{ }, nullspace matrix of A = 

(d) 

 augmented matrix 

 

 if Ax=b is consistent, then 
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 230000 b

23 bb   = 0, 23 bb  . 

 

) 

p = b set free varible to be 0. 

 , =

= 8

 x1 + 3x2 =11  x1=2, x2 =3. 

(e
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irst find row echelon form of each matrix 

) , rank = 2, m = 2, n = 3.   (2)  , rank = 1, m = 2, n = 3. 

, rank = 2, m = 3, n = 2. 

(5) , rank = 2, m = 2, n = 2. 

 

 

(a) (1)(5), At least one solution for every b 
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(3)    (4) , rank = 2, m = 3, n = 3. 












0

2

0

0  

 21

















000

100

121









 20

31
 

full row rank  r = m 

(3)(5), very b (b) At most one solution for e  full column rank r = n 

(c) (5),  Exactly one solution for every b 


full rank r = n = m 

) (1),  Infinite many solutions for every b(d  r < n, r = m 

) (2)(3)(4), No solution for some b(e  r < m 

)  

se the rows of A are linearly independent, reduced row echelon form of A 
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(a) rank(A) = m. 

 

(b

 Becau

could be write as  0mI  , C(A) = span{ , ..., } = m
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 n m(If n < m , rows of A are linearly dependent) 

 

(c
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(d) 

. 

(e) 

 No, N(A) is not always = {0}, the solution is not necessarily unique. 

) 

No 

  A=

  A=

A   A=

A   A=

 

 

 

 

 

 Yes, rank(A) = m

(f) 

 Yes 

(g
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) 

Let B = , B-1 = 

-1   = 

   A = 

 C(A) = span }, R(A) = span{ } 

 

 N(A)=span{ } 

AT= 

 

 N(AT)=span{ } 
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 The basis for column space of A={ } , 

 the basis for row space of A ={ }, 

 the basis for nullspace of A = { }, 

 the basis for left nullspace of A ={ } 

(c) 

 No, 

(d) 

Yes,
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) B = EA , E is invertible A = E-1B 

j = E-1bj = E-1(c1b1 + c2b2 + … + cnbn) = c1E-1b1 + c2E-1b2 + … + cnE-1bn
 = 

1a1+c2a2+…+cnan 

Counter example:E= , A = , B = 

2 2 1 2

 a1 = 

 

(a   

a
c

 

 

(b) NO 
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(c) A = 

 a2 = 2a1 

 a4 = 4a3 +a1 
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(a) False 

 A= , B= , RA = RB = , But C(A)  C(B). 

b) 

C(AT) = C(RA
T) = C(RB

T) = C(BT) 

 

A = , A2 = , N(A) = span{ }, N(A2) = span{ } 

 









1

1
 

 








 



8200

12300

451121

 





 

8

 













333

222

111

















111

111

111

















000

000

111



( True 
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(d) True 

 invertible  is full ra {0} 

 If A is invertible ,det(A) 0 

 det(A2) = det(A)det(A) 0 

 invertible A2 is full rank N(A2)={0} 

 , A

) = 0, A 0. 

 A is A nkN(A)=




 A2 is  
 N(A) = N(A2) 

 

(e) Flase 
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