1.

(a)

Suppose $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$ and $\mathbf{x} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \dots + d_n \mathbf{v}_n$ By subtraction $(c_1 - d_1)\mathbf{v}_1 + (c_2 - d_2)\mathbf{v}_2 + \dots \cdot (c_n - d_n)\mathbf{v}_n = \mathbf{0}$ From the independence of the v's, each $c_i - d_i = 0$ Hence $c_i = d_i$, and there are not two ways to produce \mathbf{v}

(b) Suppose $c_1Av_1 + c_2Av_2 + \dots + c_nAv_n = 0$ $\rightarrow A \sum_{i=1}^{n} c_i v_i = 0$: For any A, A has inverse $\therefore \sum_{i=1}^{n} c_i v_i = 0$ $\rightarrow c_1 = c_2 = \dots = 0$ \rightarrow Ay₁, Ay₂... Ay_n is also a basis for Rⁿ 2. (a) B = EA \rightarrow A = E⁻¹B \rightarrow a_i = E⁻¹b_i If $b_j = c_1b_1 + c_2b_2 + ... + c_nb_n$ $a_{j} = E^{-1}(c_{1}b_{1} + c_{2}b_{2} + ... + c_{n}b_{n})$ $=c_1(E^{-1}b_1) + c_2(E^{-1}b_2) + ... + c_n(E^{-1}b_n)$ $= C_1 a_1 + C_2 a_2 + ... + C_n a_n$

(b)

Let R =
$$\begin{bmatrix} 1 & 5 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 = $\begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix}$
 $\therefore a_2 = 5 \times a_1$

$$a_4 = 2 \times a_1 + (-3) \times a_3$$

 \therefore **a**₂ and **a**₄ are linear combination of **a**₁ and **a**₃

(c) Counterexample

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad b_1 = b_2 \text{ , but } a_1 \neq a_2$$

3.

- The reduced row echelon form of A is $\begin{bmatrix} 1 2 & 3 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
- \rightarrow From the reduced row echelon form , we can get the row space and the null space of A.
- : span{ $[1 2 \ 3 \ 0 \ -2]^{T}$, $[0 \ 0 \ 0 \ 1 \ 3]^{T}$ } is the row space

→ the nullspace matrix is
$$\begin{bmatrix} 2 & -3 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

: span { $[2\ 1\ 0\ 0\ 0]^{T}$, $[-3\ 0\ 1\ 0\ 0]^{T}$, $[2\ 0\ 0\ -3\ 1]^{T}$ } is the null space

To find the column space and the left column space , we recover A first.

A = E × (row echelon form of A) and I₃ = E × $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{bmatrix}$

$$\rightarrow \mathbf{E} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -1 & 0 \\ -3 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\therefore A = E \times (\text{row echelon form of A}) = \begin{bmatrix} 3 & -6 & 9 & -1 & -9 \\ -3 & 6 & -9 & 1 & 9 \\ 1 & -2 & 3 & 0 & -2 \end{bmatrix}$$

∴ The row operation doesn't change the relation between the columns of A
 → column₂ = column₁ × (-2)
 column₃ = column₁ × 3
 column₅ = column₁ × (-2) + column₄ × 3

 \therefore span {[3-31]^T,[-110]^T} is the column space of A

 $\therefore E^{-1} \times A = (row echelon form of A)$

$$\rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 3 & -6 & 9 & -1 & -9 \\ -3 & 6 & -9 & 1 & 9 \\ 1 & -2 & 3 & 0 & -2 \end{bmatrix} = \begin{bmatrix} 1 - 2 & 3 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

We focus on the zero row of echelon form of A

$$\rightarrow [110] \times \begin{bmatrix} 3 & -6 & 9 & -1 & -9 \\ -3 & 6 & -9 & 1 & 9 \\ 1 & -2 & 3 & 0 & -2 \end{bmatrix} = 0$$

 \rightarrow [1 1 0]^T \in the left null space of A

We know that the dimention of left null space = the number of rows - rank , and rank(A)= 2

 \rightarrow the dimention of left null space = 1

 \therefore span{ $[1\ 1\ 0]^{T}$ } is the left null space

4

(a)

A subspace in $\mathbf{R}^4 = \{\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_1 \ \mathbf{x}_1 \ \mathbf{x}_1]^T \mid \mathbf{x} \in \mathbf{R}^4\}$

 \rightarrow Any vectors in this subspace are $[x_1 x_1 x_1 x_1]^T = x_1[1 \ 1 \ 1 \ 1]^T$

 $\rightarrow x_1$ is any constant, so the vectors in this subspace are the linear combinations of $\begin{bmatrix} 1 & 1 & 1 \\ 1 \end{bmatrix}^T$, \therefore The basis is $\{\begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$

(b)

A subspace in $\mathbb{R}^{4} = \{ \mathbf{x} = [x_{1} \ x_{2} \ x_{3} \ x_{4}]^{T} | x_{1} + x_{2} + x_{3} + x_{4} = 0, \mathbf{x} \in \mathbb{R}^{n} \}$ \rightarrow Let $x_{2} = C_{1}, x_{3} = C_{2}, x_{3} = C_{3}, x_{4} = C_{3}$ and $C_{1}, C_{2}, C_{3} \in \mathbb{R}$ $\rightarrow x_{1} = -C_{1} - C_{2} - C_{3}$ $\rightarrow x = C_{1} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + C_{2} \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + C_{3} \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$

→x is the linear combination of { $[-1\ 1\ 0\ 0\]^{T}$, $[-1\ 0\ 1\ 0\]^{T}$, $[-1\ 0\ 0\ 1]^{T}$ } ∴ The basis is { $[-1\ 1\ 0\ 0\]^{T}$, $[-1\ 0\ 1\ 0\]^{T}$, $[-1\ 0\ 0\ 1]^{T}$ }

(c)

Let $\mathbf{u}_1 = [1 \ 1 \ 1 \ 0]^T$ and $\mathbf{u}_2 = [1 \ 0 \ 1 \ 1]^T$ A subspace in $\mathbb{R}^4 = \{ \mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3 \ \mathbf{x}_4]^T \mid \mathbf{x}^T \mathbf{u}_1 = \mathbf{x}^T \mathbf{u}_2 = 0, \mathbf{x} \in \mathbb{R}^4 \}$ \rightarrow We can rewrite the relation between \mathbf{x}, \mathbf{u}_1 and \mathbf{u}_2 as $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = 0$ $\Rightarrow \text{This subspace is equal to the left null space of} \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\Rightarrow \text{The left nullspace matrix} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\therefore \text{The basis is } \{[-1 \ 1 \ 0 \ 1]^T, [-1 \ 0 \ 1 \ 0]^T\}$ (d) A subspace in R⁴ = $\{x = [a b c d]^T | a = b and c = d, x \in \mathbb{R}^4\}$ $\Rightarrow x = [a b c d]^T = [a a c c]^T = a \times [1 \ 1 \ 0 \ 0] + c \times [0 \ 0 \ 1 \ 1]$

 \therefore The basis is { [1 1 0 0]^T, [0 0 1 1]^T}

5.

(a)

From nullspace basis $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ in \mathbb{R}^3

→The number of columns is $3 = \operatorname{rank} + \operatorname{Dimention}$ of null space But dim(N) = 1 , dim(C) = 1 →rank + Dimention of null space = 2 ≠ 3 →This matrix is impossible

(b)

Ans: $\begin{bmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$

The column space is span{ $[120]^{T}$, $[001]^{T}$ } which contains { $[120]^{T}$, $[002]^{T}$ } The row space is span{ $[10]^{T}$, $[01]^{T}$ } which contains { $[12]^{T}$, $[34]^{T}$ } (c) Ans: $\begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$

Dimension of column space = dimension of nullspace = 1

(d) $\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} = 0$ $\Rightarrow a = -1, b = -1$ Ans: $\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

(e)

Row space = column space \rightarrow The matrix must be square

 \rightarrow Dimention of null space = the number of columns - rank

Dimention of left null space = the number of rows - rank

But the matrix is square and dimention of column space = dimention of row space.

... This matrix is impossible

6.

(a)
dim N(A) = 1 (There is one homogeneous solution)
It is obvious that A is 4 by 3.
From the rank theorem , rank(A) = n- dim N(A) = 2

(b)

Since dim C(A) = rank(A) = 2, a basis for the column space of A contains two vector. $\therefore Ax = [2222]^{T} \text{ is sovable } \therefore [2222]^{T} \text{ is in C(A)}$ $\therefore Ax = [2211]^{T} \text{ is sovable } \therefore [2211]^{T} \text{ is in C(A)}$ $\rightarrow \text{basis of C(A)} = \{[2222]^{T}, [2211]^{T}\}$

(c)

We know that N(A) = $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$

Recall the method of finding N(A) from the reduced echelon form of A.

(If
$$A \sim \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix}$$
, then N(A) = $\begin{bmatrix} -F \\ I \end{bmatrix}$)
 \therefore We can get $A \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$