Solution to Problem Set 5

1.

(a)

Suppose $\mathbf{X}=\mathrm{C}_{1} \mathbf{V}_{1}+\mathrm{C}_{2} \mathbf{V}_{2}+\cdots+\mathrm{c}_{\mathrm{n}} \mathbf{V}_{\mathbf{n}}$ and $\mathrm{X}=\mathrm{d}_{1} \mathbf{V}_{1}+\mathrm{d}_{2} \mathbf{V}_{2}+\cdots+\mathrm{d}_{n} \mathbf{V}_{\mathrm{n}}$
By subtraction $\left(\mathrm{c}_{1}-\mathrm{d}_{1}\right) \mathrm{v}_{1}+\left(\mathrm{c}_{2}-\mathrm{d}_{2}\right) \mathrm{v}_{2}+\cdots .\left(\mathrm{c}_{\mathrm{n}}-\mathrm{d}_{\mathrm{n}}\right) \mathrm{v}_{\mathrm{n}}=0$
From the independence of the v ' s, each $c_{i}-d_{i}=0$
Hence $c_{i}=d_{i}$, and there are not two ways to produce v
(b)

Suppose $c_{1} \mathrm{Av}_{1}+\mathrm{c}_{2} \mathrm{Av}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \mathrm{Av}_{\mathrm{n}}=0$
$\rightarrow A \sum_{i=1}^{n} c_{i} v_{i}=0$
\because For any A, A has inverse
$\therefore \sum_{i=1}^{n} c_{i} v_{i}=0$
$\rightarrow \mathrm{c}_{1}=\mathrm{c}_{2}=\ldots=0$
$\rightarrow \mathrm{Av}_{1}, \mathrm{Av}_{2} \ldots \mathrm{Av}_{\mathrm{n}}$ is also a basis for R^{n}
2.
(a)
$\mathrm{B}=\mathrm{EA}$
$\rightarrow A=E^{-1} B$
$\rightarrow a_{j}=E^{-1} b_{j}$
If $b_{j}=c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}$
$a_{j}=E^{-1}\left(c_{1} b_{1}+c_{2} b_{2}+\ldots+c_{n} b_{n}\right)$
$=\mathrm{c}_{1}\left(\mathrm{E}^{-1} \mathrm{~b}_{1}\right)+\mathrm{c}_{2}\left(\mathrm{E}^{-1} \mathrm{~b}_{2}\right)+\ldots+\mathrm{c}_{n}\left(\mathrm{E}^{-1} \mathrm{~b}_{\mathrm{n}}\right)$
$=c_{1} a_{1}+c_{2} a_{2}+\ldots+c_{n} a_{n}$
(b)

Let $\mathrm{R}=\left[\begin{array}{cccc}1 & 5 & 0 & 2 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]=\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & a_{4}\end{array}\right]$
$\because \mathrm{a}_{2}=5 \times \mathrm{a}_{1}$

$$
a_{4}=2 \times a_{1}+(-3) \times a_{3}
$$

$\therefore a_{2}$ and a_{4} are linear combination of a_{1} and a_{3}
(c)

Counterexample
$\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \quad b_{1}=b_{2}$, but $a_{1} \neq a_{2}$
3.

The reduced row echelon form of A is $\left[\begin{array}{ccccc}1 & -2 & 3 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
\rightarrow From the reduced row echelon form , we can get the row space and the null space of A.
$\therefore \operatorname{span}\left\{\left[\begin{array}{lllll}1 & -2 & 3 & 0 & -2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$ is the row space
\rightarrow the nullspace matrix is $\left[\begin{array}{ccc}2 & -3 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \\ 0 & 0 & 1\end{array}\right]$
\therefore span $\left\{\left[\begin{array}{lllll}2 & 1 & 0 & 0 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lllll}-3 & 0 & 1 & 0 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llllll}2 & 0 & 0 & -3 & 1\end{array}\right]^{\mathrm{T}}\right\}$ is the null space
To find the column space and the left column space, we recover A first.
$A=E \times($ row echelon form of $A)$ and $I_{3}=E \times\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0\end{array}\right]$
$\rightarrow \mathrm{E}=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 1 & 0\end{array}\right]^{-1}=\left[\begin{array}{rrr}3 & -1 & 0 \\ -3 & 1 & 1 \\ 1 & 0 & -1\end{array}\right]$
$\therefore A=E \times($ row echelon form of A$)=\left[\begin{array}{rrrrr}3 & -6 & 9 & -1 & -9 \\ -3 & 6 & -9 & 1 & 9 \\ 1 & -2 & 3 & 0 & -2\end{array}\right]$
\because The row operation doesn' t change the relation between the columns of A
\rightarrow column $_{2}=$ column $_{1} \times(-2)$
column $_{3}=$ column $_{1} \times 3$
columns $=$ column $1 \times(-2)+$ column $_{4} \times 3$
\therefore span $\left\{\left[\begin{array}{lll}3 & -3 & 1\end{array}\right]^{\mathrm{T}},[-1110]^{\mathrm{T}}\right\}$ is the column space of A
$\because E^{-1} \times A=($ row echelon form of $A)$

$$
\rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 3 \\
1 & 1 & 0
\end{array}\right] \times\left[\begin{array}{rrrrr}
3 & -6 & 9 & -1 & -9 \\
-3 & 6 & -9 & 1 & 9 \\
1 & -2 & 3 & 0 & -2
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & -2 & 3 & 0 & -2 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We focus on the zero row of echelon form of A
$\rightarrow\left[\begin{array}{lll}1 & 1 & 0\end{array}\right] \times\left[\begin{array}{rrrrr}3 & -6 & 9 & -1 & -9 \\ -3 & 6 & -9 & 1 & 9 \\ 1 & -2 & 3 & 0 & -2\end{array}\right]=0$
$\rightarrow\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}} \in$ the left null space of A
We know that the dimention of left null space $=$ the number of rows - rank , and $\operatorname{rank}(\mathrm{A})=2$
\rightarrow the dimention of left null space $=1$
$\therefore \operatorname{span}\left\{\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\mathrm{T}}\right\}$ is the left null space

4
(a)

A subspace in $R^{4}=\left\{\begin{array}{llll}\left.\left.x=\left[\begin{array}{lllllll}X_{1} & X_{1} & x_{1} & X_{1}\end{array}\right]^{T} \right\rvert\, x \in R^{4}\right\}\end{array}\right.$
\rightarrow Any vectors in this subspace are $\left[\begin{array}{llll}x_{1} & x_{1} & x_{1} & x_{1}\end{array}\right]^{T}=x_{1}\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{T}$
$\rightarrow \mathrm{X}_{1}$ is any constant, so the vectors in this subspace are the linear combinations of [111
$1]^{\mathrm{T}}, \therefore$ The basis is $\left\{\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]^{\mathrm{T}}$
(b)

A subspace in $\left.\left.R^{4}=\left\{\begin{array}{llllll} & x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T} \right\rvert\, x_{1}+x_{2}+x_{3}+x_{4}=0, x \in R^{n}\right\}$
\rightarrow Let $x_{2}=C_{1}, x_{3}=C_{2}, x_{3}=C_{3}, x_{4}=C_{3}$ and $C_{1}, C_{2}, C_{3} \in R$
$\rightarrow \mathrm{X}_{1}=-\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$
$\rightarrow \mathrm{x}=\mathrm{C}_{1}\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0\end{array}\right]+\mathrm{C}_{2}\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 0\end{array}\right]+\mathrm{C}_{3}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$

(c)

Let $\mathrm{u}_{1}=\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]^{\mathrm{T}}$ and $\mathrm{u}_{2}=\left[\begin{array}{llll}1 & 0 & 1 & 1\end{array}\right]^{\mathrm{T}}$
A subspace in $R^{4}=\left\{\begin{array}{lllll}\left.x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T} \right\rvert\, x^{T} u_{1}=x^{T} u_{2}=0, x \in R^{4}\end{array}\right\}$
\rightarrow We can rewrite the relation between $\mathbf{x}, \mathbf{u}_{1}$ and \mathbf{u}_{2} as
$\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]=0$
\rightarrow This subspace is equal to the left null space of $\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]$
\rightarrow The left nullspace matrix $=\left[\begin{array}{rr}-1 & -1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
\therefore The basis is $\left\{\left[\begin{array}{llllllll}-1 & 1 & 0 & 1\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llllll}-1 & 0 & 1 & 0\end{array}\right]^{\mathrm{T}}\right\}$
(d)

A subspace in $R^{4}=\left\{x=[a b c d]^{T} \mid a=b\right.$ and $\left.c=d, x \in R^{4}\right\}$
$\rightarrow x=[a b c d]^{\mathrm{T}}=\left[\begin{array}{lll}\mathrm{a} a c c\end{array}\right]^{\mathrm{T}}=\mathrm{a} \times\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]+c \times\left[\begin{array}{lll}0 & 0 & 1\end{array} 1\right]$
\therefore The basis is $\left\{\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llll}0 & 0 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$
5.
(a)

From nullspace basis $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ in R^{3}
\rightarrow The number of columns is $3=$ rank + Dimention of null space
But $\operatorname{dim}(N)=1, \operatorname{dim}(C)=1$
\rightarrow rank + Dimention of null space $=2 \neq 3$
\rightarrow This matrix is impossible
(b)

Ans: $\left[\begin{array}{ll}1 & 0 \\ 2 & 0 \\ 0 & 1\end{array}\right]$
The column space is $\operatorname{span}\left\{\left[\begin{array}{llll}1 & 2 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{llll}0 & 0 & 1\end{array}\right]^{\mathrm{T}}\right\}$ which contains $\left\{\left[\begin{array}{llll}1 & 2 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & 0 & 2\end{array}\right]^{\mathrm{T}}\right\}$
The row space is span $\left\{\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}},\left[\begin{array}{lll}0 & \left.1]^{\mathrm{T}}\right\}\end{array}\right.\right.$ which contains $\left\{\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}},\left[\begin{array}{ll}3 & 4\end{array}\right]^{\mathrm{T}}\right\}$
(c)

Ans: $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$
Dimension of column space $=$ dimension of nullspace $=1$
(d)
$\left[\begin{array}{ll}1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ a & b\end{array}\right]=0$
$\rightarrow a=-1, b=-1$
Ans: $\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$
(e)

Row space $=$ column space \rightarrow The matrix must be square
\rightarrow Dimention of null space $=$ the number of columns - rank
Dimention of left null space $=$ the number of rows - rank
But the matrix is square and dimention of column space $=$ dimention of row space.
\therefore This matrix is impossible
6.
(a)
$\operatorname{dim} \mathrm{N}(\mathrm{A})=1$ (There is one homogeneous solution)
It is obvious that A is 4 by 3 .
From the rank theorem, $\operatorname{rank}(A)=n-\operatorname{dim} N(A)=2$
(b)

Since $\operatorname{dim} C(A)=\operatorname{rank}(A)=2$, a basis for the column space of A contains two vector.
$\because A x=\left[\begin{array}{ll}2 & 2\end{array} 2\right]^{\mathrm{T}}$ is sovable $\therefore\left[\begin{array}{ll}2 & 2\end{array} 2\right]^{\mathrm{T}}$ is in $C(A)$
$\because A x=\left[\begin{array}{llll}2 & 2 & 1 & 1\end{array}\right]^{\mathrm{T}}$ is sovable $\therefore\left[\begin{array}{lll}2 & 2 & 1\end{array}\right]^{\mathrm{T}}$ is in $C(A)$
\rightarrow basis of $C(A)=\left\{\left[\begin{array}{llll}2 & 2 & 2 & 2\end{array}\right]^{T} \quad,\left[\begin{array}{lllll}2 & 2 & 1 & 1\end{array}\right]^{\mathrm{T}}\right\}$
(c)

We know that $\mathrm{N}(\mathrm{A})=\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$
Recall the method of finding $N(A)$ from the reduced echelon form of A.
(If A $\sim\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$, then $\mathrm{N}(\mathrm{A})=\left[\begin{array}{c}-F \\ I\end{array}\right]$)
\therefore We can get $A \sim\left[\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

