
Solution to Problem Set 6 
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2. 

Assume A is the matrix represented T 

∵ n = dimV and m = dimW 

∴ V = R
n
 , W =  R

m
 

→ If x  Rn , y  Rm 

→ Ax = y , A is m by n 

 

(a) If T maps Rn onto Rm 

→ All vectors in Rm will be mapped 

→ Range(T) = C(A) = Rm 

→ rank(A) = m , A is full row rank 

→ n ≥ m 

 

(b) If T is one-to-one 

→ Each vectors in Rm will be mapped to only one vector in Rn 

→ The null space of A must be he zero vector, because only one vector be mapped to zero 

→ A is full column rank 

→ m ≥  n 

 

(c) If T is one-to-one and maps Rn onto Rm 

→ According to (a) and (b), the matrix A must satisfy n ≥ m and n ≥ m 

→ If m = n , T is one-to-one and maps Rn onto Rm 

 

3. 

(a) 

If {v1 , v2 , v3} is a linearly dependent set 

Let v1 = c2v2 + c3v3 

T(v1) = T(c2v2 + c3v3) = c2T(v2) + c3T(v3) 

→{ T(v1) , T(v2), T(v3)} is linearly dependent 

 

(b) 
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4. 

(a) 

∵{1+t , 1+t
2
 , t+t

2
} is a basis for P

2
 

There will be a set real number of {a, b, c} satisfy that 

p(t) = 6 + 3t – t2 = a(1+t) + b(1+t2) + c(t+t2)  

→ {a, b ,c} = {5, 1, -2} 

 

(b) 

The coordinate vector of 1+2t3 = [1 0 0 2] 

The coordinate vector of 2+t-3t2 = [2 1 -3 0] 

The coordinate vector of –t + 2t2-t3 = [0 -1 2 -1] 

Let a matrix be 

1 0 0 2

2 1 -3 0

0 -1 2 -1
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 and the row echelon form is 
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→ The row are independent 

∴ 1+2t3 , 2+t-3t2, –t + 2t2-t3 are independent  

 

5. 

Let a basis V={v1, v2, v3} and another basis W={w1, w2, w3} 

Assume T is a linear transformation about mapping the coordinates of V to the coordinates 

of W. 
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 where A is the matrix represented T. 
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6. 

(a) 

A is the matrix represented T 
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The matrix A represented T is 
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(b) 
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