Solution to Problem Set 6
1.
(a)
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ -x_{1}\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\mathrm{Ax}$
$R(T)=C(A)=\operatorname{span}\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
$\operatorname{ker}(\mathrm{T})=\mathrm{N}(\mathrm{A})=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
(b)
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{c}0 \\ x_{1}+x_{2}+x_{3}\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathrm{Ax}$
$R(T)=C(A)=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
$\operatorname{ker}(T)=N(A)=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]\right\}$
(c)
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\mathrm{Ax}$
$\mathrm{R}(\mathrm{T})=\mathrm{C}(\mathrm{A})=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
$\operatorname{ker}(\mathrm{T})=\mathrm{N}(\mathrm{A})=\mathrm{R}^{2}$
(d)
$T\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right)=\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathrm{Ax}$
$R(T)=C(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
$\operatorname{ker}(\mathrm{T})=\mathrm{N}(\mathrm{A})=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
2.

Assume A is the matrix represented T
$\because \mathrm{n}=\operatorname{dimV}$ and $\mathrm{m}=\operatorname{dimW}$
$\therefore \mathrm{V}=\mathrm{R}^{\mathrm{n}}, \mathrm{W}=\mathrm{R}^{\mathrm{m}}$
\rightarrow If $x \in R^{n}, y \in R^{m}$
$\rightarrow A x=y, A$ is m by n
(a) If T maps R^{n} onto R^{m}
\rightarrow All vectors in R^{m} will be mapped
$\rightarrow \operatorname{Range}(\mathrm{T})=\mathrm{C}(\mathrm{A})=\mathrm{R}^{\mathrm{m}}$
$\rightarrow \operatorname{rank}(\mathrm{A})=\mathrm{m}, \mathrm{A}$ is full row rank
$\rightarrow \mathrm{n} \geq \mathrm{m}$
(b) If T is one-to-one
\rightarrow Each vectors in R^{m} will be mapped to only one vector in R^{n}
\rightarrow The null space of A must be he zero vector, because only one vector be mapped to zero
\rightarrow A is full column rank
$\rightarrow \mathrm{m} \geq \mathrm{n}$
(c) If T is one-to-one and maps R^{n} onto R^{m}
\rightarrow According to (a) and (b), the matrix A must satisfy $n \geq m$ and $n \geq m$
\rightarrow If $m=n, T$ is one-to-one and maps R^{n} onto R^{m}
3.
(a)

If $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ is a linearly dependent set
Let $\mathrm{v}_{1}=\mathrm{C}_{2} \mathrm{v}_{2}+\mathrm{C}_{3} \mathrm{v}_{3}$
$\mathrm{T}\left(\mathrm{v}_{1}\right)=\mathrm{T}\left(\mathrm{c}_{2} \mathrm{~V}_{2}+\mathrm{c}_{3} \mathrm{v}_{3}\right)=\mathrm{c}_{2} \mathrm{~T}\left(\mathrm{v}_{2}\right)+\mathrm{c}_{3} \mathrm{~T}\left(\mathrm{v}_{3}\right)$
$\rightarrow\left\{T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)\right\}$ is linearly dependent
(b)
$\because\{T(u), T(v)\}$ is linearly dependent.
$\rightarrow c_{1} T(u)+c_{2} T(v)=0 \ni c_{1}, c_{2} \neq 0$
$\rightarrow T\left(c_{1} u+c_{2} v\right)=0$
Let $x=c_{1} u+c_{2} v$
$\because\{u, v\}$ is linear independent
$\therefore \ni$ a nonzero x such that $T(x)=0$
4.
(a)
$\because\left\{1+t, 1+t^{2}, t+t^{2}\right\}$ is a basis for P^{2}
There will be a set real number of $\{a, b, c\}$ satisfy that
$p(t)=6+3 t-t^{2}=a(1+t)+b\left(1+t^{2}\right)+c\left(t+t^{2}\right)$
$\rightarrow\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\{5,1,-2\}$
(b)

The coordinate vector of $1+2 t^{3}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$
The coordinate vector of $2+t-3 t^{2}=\left[\begin{array}{lll}2 & 1 & -3\end{array}\right]$
The coordinate vector of $-t+2 t^{2}-t^{3}=[0-12-1]$
Let a matrix be $\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 2 & 1 & -3 & 0 \\ 0 & -1 & 2 & -1\end{array}\right]$ and the row echelon form is $\left[\begin{array}{cccc}1 & 0 & 0 & 2 \\ 0 & 1 & -3 & -4 \\ 0 & 0 & 1 & 5\end{array}\right]$
\rightarrow The row are independent
$\therefore 1+2 t^{3}, 2+t-3 t^{2},-t+2 t^{2}-t^{3}$ are independent
5.

Let a basis $V=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$ and another basis $\mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right\}$
Assume T is a linear transformation about mapping the coordinates of V to the coordinates of W.
$\rightarrow A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ where A is the matrix represented T.
$\rightarrow A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$

If $A v=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$\rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right] v=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
$\rightarrow v=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$
6.
(a)

A is the matrix represented T
$T\left(\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \rightarrow A\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
$T\left(\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \rightarrow A\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
$T\left(\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right] \rightarrow A\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$
$\rightarrow A\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right]$

The matrix A represented T is $\left[\begin{array}{rrr}0.5 & 0.5 & 0.5 \\ -0.5 & 1.5 & 0.5 \\ 0.5 & -0.5 & -0.5\end{array}\right]$
(b)

Let B be the basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
$A^{\prime}:[v]_{B} \xrightarrow{B} v \xrightarrow{A} T(v) \xrightarrow{B^{-1}}[T(v)]_{B}$
$\therefore A^{\prime}=B^{-1} A B=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]^{-1}\left[\begin{array}{rrr}0.5 & 0.5 & 0.5 \\ -0.5 & 1.5 & 0.5 \\ 0.5 & -0.5 & -0.5\end{array}\right]\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0.5 & 0 & -1 \\ 0.5 & 1 & 2 \\ -0.5 & 0 & 0\end{array}\right]$
(c)

Let B be the basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$
$A^{\prime}:[v]_{B} \xrightarrow{B} v \xrightarrow{A} T(v) \xrightarrow{B^{-1}}[T(v)]_{B}$
$\therefore A^{\prime}=B^{-1} A B=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 3 & 1\end{array}\right]^{-1}\left[\begin{array}{rrr}0.5 & 0.5 & 0.5 \\ -0.5 & 1.5 & 0.5 \\ 0.5 & -0.5 & -0.5\end{array}\right]\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 2 & 1 \\ 0 & 3 & 1\end{array}\right]=\left[\begin{array}{ccc}-1.5 & 13.5 & 7 \\ 1 & -5 & -3 \\ -2.5 & 13.5 & 8\end{array}\right]$

