Tag Archives: 外積

內積與外積是怎麼來的?

本文的閱讀等級:初級 在歐幾里得空間 ,兩個向量的內積與外積是怎麼來的?從決定論 (determinism) 的觀點,內積與外積之所以如此定義,可以用先前的數學發展和事態來解釋。愛爾蘭數學家哈密頓 (William Rowan Hamilton) 於1843年提出四元數 (quaternion) 的概念。一個四元數是一個實數加上三個虛部 (見“四元數”),記為 ,其中 是實數,虛數單位 滿足基本公式 。1878年,英國數學家克利福德 (William Kingdon Clifford)[1] 出版 Elements of Dynamic,書中首次用純量積 (scalar product) 與向量積 (vector product) 表示兩個四元數的積。今天,我們習慣稱純量積為點積 (dot product) 或內積 (inner product),向量積則稱為外積或叉積 (cross product)。令 ,, 為 的標準單位向量。一個四元數可用純量─向量和表示為 ,其中 … Continue reading

Posted in 線性代數專欄, 內積空間 | Tagged , , , , | 4 Comments

梯度、散度與旋度的恆等式

本文的閱讀等級:初級 令 是一開集, 是連續可微函數,且 是連續可微向量函數。純量函數 的梯度 (grad),向量函數 的散度 (div) 和旋度 (curl) 定義如下 (見“梯度、散度與旋度”): 。 本文整理出一些梯度、散度與旋度的恆等式,並提供證明。

Posted in 特別主題 | Tagged , , , , | 3 Comments

梯度、散度與旋度

本文的閱讀等級:初級 向量算子是向量分析 (vector calculus 或 vector analysis) 的馱馬,最重要的算子包括梯度 (gradient)、散度 (divergence) 與旋度 (curl)。令 是一開集, 是一次連續可微函數 (以 表示),且 是定義於 的一 向量場 (vector field)。所謂向量場其實就是一個向量函數,例如, , 有些物理和微積分課本將向量場 表示為 , 其中 是 的標準單位向量 (線性代數慣用的對應記號為 )。為便利表達,我們將微分算子 (讀作nabla) 視為一向量: , 這裡 是偏微分算子。函數 的梯度 (grad),向量場 的散度 (div) 和旋度 … Continue reading

Posted in 特別主題 | Tagged , , , , , | 28 Comments

答張盛東──關於外積與行列式的關係

網友張盛東留言: 老師,請教一下外積 (cross product) 與行列式的關系為何?為何兩個向量的外積與這兩個向量垂直并且可以通過行列式表達?我只記得外積的定義式但從未真正理解其本質,請老師指教。   答曰: 定義能夠彰顯本質嗎?我們所認知的世界只是形形象象的現象世界,而非哲學家指稱的本來世界。不論認識天文地理抑或理解概念名詞,我們必須有一個角度。從不同的角度出發,看到的是不同的現象世界。如果存在本來世界,那麼與之相比,現象世界不過是假象。反之,如果不存在本來世界,那麼每一個現象世界應當都是真實的,也都有存在的權利。我們採用的定義隨著選擇的角度改變,故而看到現象世界的不同面向。傳統上,我們從幾何直觀來定義外積 (cross product,或稱向量積),維基百科說[1]:兩個三維向量 和 的外積定義為 , 其中 表示 和 之間的角度 (),且 是與 和 所在平面垂直並滿足右手定則的單位向量 (見維基百科圖示)。表面上,這個公認的外積定義與行列式無關,因此我們可能以為兩者之間的關係只是一種偶然。為了釐清外積與行列式的關係,下面我選用一個不尋常的角度──直接以行列式來定義外積。

Posted in 答讀者問, 行列式 | Tagged , | 5 Comments

再談克拉瑪公式的證明

本文的閱讀等級:初級 在“克拉瑪公式的證明”一文,我們介紹了一個僅使用矩陣乘法運算和矩陣乘積行列式性質的簡易證明方法。該文提及高中數學教師可能利用向量外積 (cross product,或稱向量積) 來推導三階線性聯立方程的克拉瑪公式,但你不免好奇如何由三階公式推廣至更高階公式?回答這個疑問的途徑是通過一個稱為「選擇消滅」(selective annihilation) 的數學技巧。

Posted in 線性代數專欄, 行列式 | Tagged , , , , | Leave a comment