Tag Archives: 旋轉矩陣

每週問題 February 20, 2017

證明三階旋轉矩陣的一個跡數恆等式。 Let be a real orthogonal matrix and . Prove that .

Posted in pow 特徵分析, 每週問題 | Tagged , , , | 1 Comment

答DJWS──關於以鏡射變換實現矩陣轉置

網友DJWS留言: 想請教老師一個問題:給定矩陣 ,使用一連串的鏡射變換,變成其轉置 ,該如何做呢?

Posted in 答讀者問, 線性變換 | Tagged , , , , | Leave a comment

高階旋轉矩陣

本文的閱讀等級:中級 若 是 階實正交矩陣 (簡稱正交矩陣),,且 ,則 稱為旋轉矩陣。以下設 。正交變換具有保角、保長以及保距性。下面是正交矩陣的等價界定性質 (見“旋轉與鏡射”): 對於任意 ,。 對於任一 ,。 對於任意 ,。 加入條件 的用意在於物體旋轉是剛體運動 (rigid body motion),故而保留方向性 (orientation)。若 和 是同大小的旋轉矩陣,則 且 ,可知 也是旋轉矩陣。

Posted in 線性變換, 線性代數專欄 | Tagged , , | 1 Comment

旋轉與鏡射

本文的閱讀等級:中級 令 為一個 階實矩陣。若 ,則 (轉置即為逆矩陣),我們稱 為正交矩陣 (orthogonal matrix) 。令 為正交矩陣 的行向量 (column vector),記為 。因此,,即 若 , 若 。正交矩陣的行向量組成一個單範正交集 (orthonormal set)。因為 是實矩陣,,正交矩陣是一種特殊的么正 (unitary) 矩陣,其界定條件為 。正交矩陣繼承么正矩陣的性質,正交變換具有保角、保長以及保距性。下面是正交矩陣的等價界定性質 (證明見“等距同構與么正矩陣”): 對於任意 ,。 對於任一 ,。 對於任意 ,。 本文討論兩種主要的正交矩陣:旋轉與鏡射,並解說兩者的相互表達。為便利說明,我們將使用下列預備知識。假設 ,。使用性質2,,即得 ,故正交矩陣的特徵值的絕對值等於 。正交矩陣歸屬正規 (normal) 矩陣,即 ,因此擁有完整的 個單範正交特徵向量 … Continue reading

Posted in 線性變換, 線性代數專欄 | Tagged , , , | Leave a comment

保長、保角與共形映射

本文的閱讀等級:中級 令 為一 階實矩陣。我們可以將 視為一個從幾何向量空間 映至 的線性變換:,其中 。如果線性變換 不改變向量長度,則 稱為保長 (length-preserving) 映射或等距同構 (isometry)。保長映射 有下列等價的定義方式 (見“等距同構與么正矩陣”): 是一實正交矩陣 (orthogonal matrix),即 。 對於每一 ,。 對於任何 ,。 對於任何 ,。 保長映射的定義條件相當嚴苛,我們可以將它稍微放鬆。兩個實向量 和 的內積定義為 (見“內積的定義”) , 其中 是 和 的夾角。對於任意非零向量 ,若線性變換 不改變 和 的夾角,也就是說, , 則 … Continue reading

Posted in 線性代數專欄, 仿射幾何 | Tagged , , , , , , | 2 Comments

答王jiun──關於平面上的鏡射問題

網友王jiun留言: Dear 周老師,偶發機會,連上老師的網站,看到了好多矩陣的問題。原本是想查看看 Cayley-Hamilton 定理,因為高中數學解決矩陣高次方問題時,利用 Cayley-Hamilton 定理創造出一個特徵方程式,再除以此特徵方程式,將高次方變成處理餘式即可。這方法真妙……於是上網搜尋關鍵字,因緣際會連上老師的網站,真是福氣,學習好多好多東西 (原因還是很多看不懂)。 近期高中(四)3-4上課到鏡射矩陣,學習到一些好方法。因此利用直線的斜率創造出旋轉矩陣解決了對稱點的問題,但是偏偏課本舉例的對稱直線都是通過原點的。但是我發現若對稱直線沒有通過原點,那到底要怎麼解決呢?我原本想是不是先做點的平移,使直線通過原點,不過越想越頭痛,陷入思考盲點。以下是我從網路去找練習題目練習,都有給解答,但都沒有解釋。我怎麼都想不透?特請老師可否解救我,感恩。 問題一:設點 對於直線 的鏡射點為 ,請找出 與 的關係 (見圖一)。 解答: 問題二:如圖二,設直線 與 的夾角為 ,點 對於 的鏡射點為 ,點 對於 的鏡射點為 ,找出 與 的關係。(兩次鏡射等於一次旋轉) 解答: 問題三:設點 對於直線 (其中 ) 的鏡射點為 ,請找出 與 的關係。 解答: 第一題:那一直線斜率明明是 … Continue reading

Posted in 答讀者問, 線性變換 | Tagged , | Leave a comment

三維空間的旋轉矩陣

本文的閱讀等級:中級 在二維平面上,逆時針方向旋轉 徑度 (弧度,radian) 的旋轉矩陣為 (見“幾何變換矩陣的設計”) 。 不難驗證 的特徵值為 和 ,其中 ,並具有下面兩個基本性質: 旋轉矩陣 的兩個行向量 (column vector) 和 組成一個單範正交集 (orthonormal set),也就是說, 是一個實正交矩陣 (orthogonal matrix),滿足 ,故逆旋轉矩陣為 。 對於任一實正交矩陣 ,,即得 。若 ,則 稱為適當的 (proper) 正交矩陣。計算 ,旋轉矩陣 是適當的正交矩陣。若 ,則 稱為不適當的正交矩陣,例如鏡射矩陣 (見“旋轉與鏡射”) 。 本文討論常見於電腦圖學 (computer … Continue reading

Posted in 線性變換, 線性代數專欄 | Tagged , , , , , , , , | 21 Comments

四元數與三維空間旋轉

本文的閱讀等級:中級 愛爾蘭數學家哈密頓 (William Rowan Hamilton) 將複數 ,其中 是實數, 是虛數單位,延伸為四元數 (quaternion),即一個實數加上三個虛部, , 其中 是實數,虛數單位 滿足基本公式 。 任一複數 與單位複數 的乘積 可以解讀為點 在二維複數平面逆時針旋轉 徑度 (見“複數的矩陣表示”)。類似地,四元數亦可表示三維空間旋轉,不過這個性質不像複數蘊含平面旋轉那般明顯,因為實在難以想像處於 的四元數如何對 向量執行運算。

Posted in 線性變換, 線性代數專欄 | Tagged , , , , , | 15 Comments

Cayley 變換

本文的閱讀等級:初級 令 為一個 階矩陣。若 可逆,英國數學家凱萊 (Arthur Cayley) 於1846年提出下列變換,稱為 Cayley 變換[1]: , 其中 與 是可交換矩陣 (證明見註解[2])。除非特別註明,以下考慮實矩陣。通過 Cayley 變換,反對稱矩陣 (anti-symmetric matrix) 或稱斜對稱矩陣 (skew-symmetric matrix) 與特殊的一類正交矩陣 (orthogonal matrix) 具有一對一的對應關係。

Posted in 線性變換, 線性代數專欄 | Tagged , , , , | Leave a comment

複數的矩陣表示

本文的閱讀等級:初級 十八世紀末,複數已漸漸被時人所接受,1799年挪威─丹麥數學家韋塞爾 (Caspar Wessel) 提出複數可看作平面上的一點。數年後,高斯 (Carl Friedrich Gauss) 再提出此觀點並大力推廣,從此複數的研究開始快速發展[1]。複數數系是一個體 (域,field),我們用 表示複數體。簡單地說,一個體就是具有加法和乘法的數系 (見“有限體與模算術”),譬如,實數系 是一個最常見的體。高斯主張複數系 是二維平面 (稱為複數平面),並賦予一乘法運算。令實部單位 在複數平面的座標為 ,虛部單位 在複數平面的座標為 。任一複數 可唯一表示為 ,其中 和 是實數,也就是說,複數 可以視為實數 和 組成的有序對: 。 這裡我們要澄清一個觀念:向量空間 的維數 (dimension) 究竟是 還是 ?向量空間 的維數定義為 的基底的基數 (cardinal number),即基底向量的總數。複數系 既是一個複向量空間也是實向量空間[2], 的維數取決於構成向量空間的體,也就是說,,但 。不過,複向量空間 … Continue reading

Posted in 線性變換, 線性代數專欄 | Tagged , , , | 1 Comment